Spaces:
Sleeping
Sleeping
SakshiRathi77
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
-
# Import YOLOv9
|
5 |
-
import yolov9
|
6 |
|
7 |
-
# def download_models(model_id):
|
8 |
-
# hf_hub_download("SakshiRathi77/void-space-detection/weights", filename=f"{model_id}", local_dir=f"./")
|
9 |
-
# return f"./{model_id}"
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
13 |
"""
|
14 |
Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust
|
15 |
the input size and apply test time augmentation.
|
@@ -21,11 +174,12 @@ def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
|
21 |
:param size: Optional, input size for inference.
|
22 |
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
23 |
"""
|
24 |
-
|
|
|
25 |
|
26 |
# Load the model
|
27 |
-
|
28 |
-
model = yolov9.load(
|
29 |
|
30 |
# Set model parameters
|
31 |
model.conf = conf_threshold
|
@@ -45,6 +199,13 @@ def app():
|
|
45 |
with gr.Row():
|
46 |
with gr.Column():
|
47 |
img_path = gr.Image(type="filepath", label="Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
image_size = gr.Slider(
|
49 |
label="Image Size",
|
50 |
minimum=320,
|
@@ -75,7 +236,7 @@ def app():
|
|
75 |
fn=yolov9_inference,
|
76 |
inputs=[
|
77 |
img_path,
|
78 |
-
|
79 |
image_size,
|
80 |
conf_threshold,
|
81 |
iou_threshold,
|
@@ -83,7 +244,7 @@ def app():
|
|
83 |
outputs=[output_numpy],
|
84 |
)
|
85 |
|
86 |
-
|
87 |
|
88 |
|
89 |
gradio_app = gr.Blocks()
|
@@ -98,6 +259,7 @@ with gradio_app:
|
|
98 |
"""
|
99 |
<h3 style='text-align: center'>
|
100 |
Follow me for more!
|
|
|
101 |
</h3>
|
102 |
""")
|
103 |
with gr.Row():
|
@@ -105,43 +267,3 @@ with gradio_app:
|
|
105 |
app()
|
106 |
|
107 |
gradio_app.launch(debug=True)
|
108 |
-
|
109 |
-
# make sure you have the following dependencies
|
110 |
-
# import gradio as gr
|
111 |
-
# import torch
|
112 |
-
# from torchvision import transforms
|
113 |
-
# from PIL import Image
|
114 |
-
|
115 |
-
# # Load the YOLOv9 model
|
116 |
-
# model_path = "best.pt" # Replace with the path to your YOLOv9 model
|
117 |
-
# model = torch.load(model_path)
|
118 |
-
|
119 |
-
# # Define preprocessing transforms
|
120 |
-
# preprocess = transforms.Compose([
|
121 |
-
# transforms.Resize((640, 640)), # Resize image to model input size
|
122 |
-
# transforms.ToTensor(), # Convert image to tensor
|
123 |
-
# ])
|
124 |
-
|
125 |
-
# # Define a function to perform inference
|
126 |
-
# def detect_void(image):
|
127 |
-
# # Preprocess the input image
|
128 |
-
# image = Image.fromarray(image)
|
129 |
-
# image = preprocess(image).unsqueeze(0) # Add batch dimension
|
130 |
-
|
131 |
-
# # Perform inference
|
132 |
-
# with torch.no_grad():
|
133 |
-
# output = model(image)
|
134 |
-
|
135 |
-
# # Post-process the output if needed
|
136 |
-
# # For example, draw bounding boxes on the image
|
137 |
-
|
138 |
-
# # Convert the image back to numpy array
|
139 |
-
# # and return the result
|
140 |
-
# return output.squeeze().numpy()
|
141 |
-
|
142 |
-
# # Define Gradio interface components
|
143 |
-
# input_image = gr.inputs.Image(shape=(640, 640), label="Input Image")
|
144 |
-
# output_image = gr.outputs.Image(label="Output Image")
|
145 |
-
|
146 |
-
# # Create Gradio interface
|
147 |
-
# gr.Interface(fn=detect_void, inputs=input_image, outputs=output_image, title="Void Detection App").launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import spaces
|
3 |
+
# from huggingface_hub import hf_hub_download
|
4 |
+
# # Import YOLOv9
|
5 |
+
# import yolov9
|
6 |
+
|
7 |
+
# # def download_models(model_id):
|
8 |
+
# # hf_hub_download("SakshiRathi77/void-space-detection/weights", filename=f"{model_id}", local_dir=f"./")
|
9 |
+
# # return f"./{model_id}"
|
10 |
+
|
11 |
+
# def download_models(model_id):
|
12 |
+
# hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./")
|
13 |
+
# return f"./{model_id}"
|
14 |
+
|
15 |
+
# def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
16 |
+
# """
|
17 |
+
# Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust
|
18 |
+
# the input size and apply test time augmentation.
|
19 |
+
|
20 |
+
# :param model_path: Path to the YOLOv9 model file.
|
21 |
+
# :param conf_threshold: Confidence threshold for NMS.
|
22 |
+
# :param iou_threshold: IoU threshold for NMS.
|
23 |
+
# :param img_path: Path to the image file.
|
24 |
+
# :param size: Optional, input size for inference.
|
25 |
+
# :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
26 |
+
# """
|
27 |
+
|
28 |
+
|
29 |
+
# # Load the model
|
30 |
+
# model_path = download_models()
|
31 |
+
# # model = yolov9.load("./best.pt")
|
32 |
+
|
33 |
+
# # Set model parameters
|
34 |
+
# model.conf = conf_threshold
|
35 |
+
# model.iou = iou_threshold
|
36 |
+
|
37 |
+
# # Perform inference
|
38 |
+
# results = model(img_path, size=image_size)
|
39 |
+
|
40 |
+
# # Optionally, show detection bounding boxes on image
|
41 |
+
# output = results.render()
|
42 |
+
|
43 |
+
# return output[0]
|
44 |
+
|
45 |
+
|
46 |
+
# def app():
|
47 |
+
# with gr.Blocks():
|
48 |
+
# with gr.Row():
|
49 |
+
# with gr.Column():
|
50 |
+
# img_path = gr.Image(type="filepath", label="Image")
|
51 |
+
# image_size = gr.Slider(
|
52 |
+
# label="Image Size",
|
53 |
+
# minimum=320,
|
54 |
+
# maximum=1280,
|
55 |
+
# step=32,
|
56 |
+
# value=640,
|
57 |
+
# )
|
58 |
+
# conf_threshold = gr.Slider(
|
59 |
+
# label="Confidence Threshold",
|
60 |
+
# minimum=0.1,
|
61 |
+
# maximum=1.0,
|
62 |
+
# step=0.1,
|
63 |
+
# value=0.4,
|
64 |
+
# )
|
65 |
+
# iou_threshold = gr.Slider(
|
66 |
+
# label="IoU Threshold",
|
67 |
+
# minimum=0.1,
|
68 |
+
# maximum=1.0,
|
69 |
+
# step=0.1,
|
70 |
+
# value=0.5,
|
71 |
+
# )
|
72 |
+
# yolov9_infer = gr.Button(value="Inference")
|
73 |
+
|
74 |
+
# with gr.Column():
|
75 |
+
# output_numpy = gr.Image(type="numpy",label="Output")
|
76 |
+
|
77 |
+
# yolov9_infer.click(
|
78 |
+
# fn=yolov9_inference,
|
79 |
+
# inputs=[
|
80 |
+
# img_path,
|
81 |
+
# # model_path,
|
82 |
+
# image_size,
|
83 |
+
# conf_threshold,
|
84 |
+
# iou_threshold,
|
85 |
+
# ],
|
86 |
+
# outputs=[output_numpy],
|
87 |
+
# )
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
# gradio_app = gr.Blocks()
|
93 |
+
# with gradio_app:
|
94 |
+
# gr.HTML(
|
95 |
+
# """
|
96 |
+
# <h1 style='text-align: center'>
|
97 |
+
# YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
|
98 |
+
# </h1>
|
99 |
+
# """)
|
100 |
+
# gr.HTML(
|
101 |
+
# """
|
102 |
+
# <h3 style='text-align: center'>
|
103 |
+
# Follow me for more!
|
104 |
+
# </h3>
|
105 |
+
# """)
|
106 |
+
# with gr.Row():
|
107 |
+
# with gr.Column():
|
108 |
+
# app()
|
109 |
+
|
110 |
+
# gradio_app.launch(debug=True)
|
111 |
+
|
112 |
+
# make sure you have the following dependencies
|
113 |
+
# import gradio as gr
|
114 |
+
# import torch
|
115 |
+
# from torchvision import transforms
|
116 |
+
# from PIL import Image
|
117 |
+
|
118 |
+
# # Load the YOLOv9 model
|
119 |
+
# model_path = "best.pt" # Replace with the path to your YOLOv9 model
|
120 |
+
# model = torch.load(model_path)
|
121 |
+
|
122 |
+
# # Define preprocessing transforms
|
123 |
+
# preprocess = transforms.Compose([
|
124 |
+
# transforms.Resize((640, 640)), # Resize image to model input size
|
125 |
+
# transforms.ToTensor(), # Convert image to tensor
|
126 |
+
# ])
|
127 |
+
|
128 |
+
# # Define a function to perform inference
|
129 |
+
# def detect_void(image):
|
130 |
+
# # Preprocess the input image
|
131 |
+
# image = Image.fromarray(image)
|
132 |
+
# image = preprocess(image).unsqueeze(0) # Add batch dimension
|
133 |
+
|
134 |
+
# # Perform inference
|
135 |
+
# with torch.no_grad():
|
136 |
+
# output = model(image)
|
137 |
+
|
138 |
+
# # Post-process the output if needed
|
139 |
+
# # For example, draw bounding boxes on the image
|
140 |
+
|
141 |
+
# # Convert the image back to numpy array
|
142 |
+
# # and return the result
|
143 |
+
# return output.squeeze().numpy()
|
144 |
+
|
145 |
+
# # Define Gradio interface components
|
146 |
+
# input_image = gr.inputs.Image(shape=(640, 640), label="Input Image")
|
147 |
+
# output_image = gr.outputs.Image(label="Output Image")
|
148 |
+
|
149 |
+
# # Create Gradio interface
|
150 |
+
# gr.Interface(fn=detect_void, inputs=input_image, outputs=output_image, title="Void Detection App").launch()
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
import gradio as gr
|
156 |
import spaces
|
157 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
158 |
|
|
|
|
|
|
|
159 |
|
160 |
+
def download_models(model_id):
|
161 |
+
hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./")
|
162 |
+
return f"./{model_id}"
|
163 |
|
164 |
+
|
165 |
+
def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold):
|
166 |
"""
|
167 |
Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust
|
168 |
the input size and apply test time augmentation.
|
|
|
174 |
:param size: Optional, input size for inference.
|
175 |
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
176 |
"""
|
177 |
+
# Import YOLOv9
|
178 |
+
import yolov9
|
179 |
|
180 |
# Load the model
|
181 |
+
model_path = download_models(model_id)
|
182 |
+
model = yolov9.load(model_path)
|
183 |
|
184 |
# Set model parameters
|
185 |
model.conf = conf_threshold
|
|
|
199 |
with gr.Row():
|
200 |
with gr.Column():
|
201 |
img_path = gr.Image(type="filepath", label="Image")
|
202 |
+
model_path = gr.Dropdown(
|
203 |
+
label="Model",
|
204 |
+
choices=[
|
205 |
+
"yolov9-c.pt",
|
206 |
+
],
|
207 |
+
value="yolov9-c.pt",
|
208 |
+
)
|
209 |
image_size = gr.Slider(
|
210 |
label="Image Size",
|
211 |
minimum=320,
|
|
|
236 |
fn=yolov9_inference,
|
237 |
inputs=[
|
238 |
img_path,
|
239 |
+
model_path,
|
240 |
image_size,
|
241 |
conf_threshold,
|
242 |
iou_threshold,
|
|
|
244 |
outputs=[output_numpy],
|
245 |
)
|
246 |
|
247 |
+
|
248 |
|
249 |
|
250 |
gradio_app = gr.Blocks()
|
|
|
259 |
"""
|
260 |
<h3 style='text-align: center'>
|
261 |
Follow me for more!
|
262 |
+
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
|
263 |
</h3>
|
264 |
""")
|
265 |
with gr.Row():
|
|
|
267 |
app()
|
268 |
|
269 |
gradio_app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|