Spaces:
Sleeping
Sleeping
File size: 4,347 Bytes
2fea6fc 8429a55 611a237 8e909d4 2fea6fc 8e909d4 611a237 2fea6fc 97ff8bc 2fea6fc 611a237 2fea6fc 8429a55 611a237 2fea6fc 97ff8bc 611a237 2fea6fc 611a237 2fea6fc 611a237 2fea6fc 611a237 2fea6fc 97ff8bc 2fea6fc 611a237 2fea6fc 8e909d4 2fea6fc 192a5c6 2fea6fc 192a5c6 2fea6fc 192a5c6 2fea6fc 192a5c6 2fea6fc 192a5c6 2fea6fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import gradio as gr
import spaces
from huggingface_hub import hf_hub_download
# Import YOLOv9
import yolov9
# def download_models(model_id):
# hf_hub_download("SakshiRathi77/void-space-detection/weights", filename=f"{model_id}", local_dir=f"./")
# return f"./{model_id}"
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
"""
Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust
the input size and apply test time augmentation.
:param model_path: Path to the YOLOv9 model file.
:param conf_threshold: Confidence threshold for NMS.
:param iou_threshold: IoU threshold for NMS.
:param img_path: Path to the image file.
:param size: Optional, input size for inference.
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
"""
# Load the model
# model_path = download_models()
model = yolov9.load("./best.pt")
# Set model parameters
model.conf = conf_threshold
model.iou = iou_threshold
# Perform inference
results = model(img_path, size=image_size)
# Optionally, show detection bounding boxes on image
output = results.render()
return output[0]
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
img_path = gr.Image(type="filepath", label="Image")
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.4,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.5,
)
yolov9_infer = gr.Button(value="Inference")
with gr.Column():
output_numpy = gr.Image(type="numpy",label="Output")
yolov9_infer.click(
fn=yolov9_inference,
inputs=[
img_path,
# model_path,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_numpy],
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
Follow me for more!
</h3>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True)
# make sure you have the following dependencies
# import gradio as gr
# import torch
# from torchvision import transforms
# from PIL import Image
# # Load the YOLOv9 model
# model_path = "best.pt" # Replace with the path to your YOLOv9 model
# model = torch.load(model_path)
# # Define preprocessing transforms
# preprocess = transforms.Compose([
# transforms.Resize((640, 640)), # Resize image to model input size
# transforms.ToTensor(), # Convert image to tensor
# ])
# # Define a function to perform inference
# def detect_void(image):
# # Preprocess the input image
# image = Image.fromarray(image)
# image = preprocess(image).unsqueeze(0) # Add batch dimension
# # Perform inference
# with torch.no_grad():
# output = model(image)
# # Post-process the output if needed
# # For example, draw bounding boxes on the image
# # Convert the image back to numpy array
# # and return the result
# return output.squeeze().numpy()
# # Define Gradio interface components
# input_image = gr.inputs.Image(shape=(640, 640), label="Input Image")
# output_image = gr.outputs.Image(label="Output Image")
# # Create Gradio interface
# gr.Interface(fn=detect_void, inputs=input_image, outputs=output_image, title="Void Detection App").launch()
|