Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import DetrImageProcessor, DetrForObjectDetection | |
from PIL import Image | |
import torch | |
import cv2 | |
import numpy as np | |
def process_image(input_image): | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
yellow = (0, 255, 255) # BGR | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
stroke = 2 | |
# Convert PIL image to OpenCV format | |
img = np.array(input_image) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
# Process the image | |
inputs = processor(images=input_image, return_tensors="pt") | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([input_image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
cv2.rectangle(img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), yellow, stroke) | |
cv2.putText(img, model.config.id2label[label.item()], (int(box[0]), int(box[1]-10)), font, 1, yellow, stroke, cv2.LINE_AA) | |
# Convert back to PIL image | |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
# Create Gradio interface | |
iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(), outputs="image") | |
iface.launch() | |