Spaces:
Runtime error
Runtime error
Commit
·
03c454c
1
Parent(s):
bc0462c
Update app.py
Browse files
app.py
CHANGED
@@ -3,47 +3,21 @@ from transformers import pipeline
|
|
3 |
from datasets import load_dataset
|
4 |
import requests
|
5 |
import traceback
|
6 |
-
import
|
7 |
|
8 |
dataset = load_dataset("SaladSlayer00/twin_matcher")
|
9 |
|
10 |
image_classifier = pipeline("image-classification", model="SaladSlayer00/twin_matcher")
|
11 |
|
12 |
-
def format_info(info_json):
|
13 |
-
try:
|
14 |
-
|
15 |
-
info_data = json.loads(info_json)
|
16 |
-
|
17 |
-
formatted_info = "<table style='border-collapse: collapse; width: 80%; margin: 20px;'>"
|
18 |
-
formatted_info += "<tr style='background-color: #f2f2f2;'>"
|
19 |
-
for key in info_data[0].keys():
|
20 |
-
formatted_info += f"<th style='border: 1px solid #dddddd; text-align: left; padding: 8px;'><b>{key.capitalize()}</b></th>"
|
21 |
-
formatted_info += "</tr>"
|
22 |
-
|
23 |
-
for entry in info_data:
|
24 |
-
formatted_info += "<tr>"
|
25 |
-
for value in entry.values():
|
26 |
-
formatted_info += f"<td style='border: 1px solid #dddddd; text-align: left; padding: 8px;'>{value}</td>"
|
27 |
-
formatted_info += "</tr>"
|
28 |
-
formatted_info += "</table>"
|
29 |
-
return formatted_info
|
30 |
-
except Exception as e:
|
31 |
-
print(f"Error formatting info: {e}")
|
32 |
-
return "Info not available."
|
33 |
-
|
34 |
def fetch_info(celebrity_label):
|
35 |
try:
|
36 |
-
|
37 |
parts = celebrity_label.split("_")
|
38 |
formatted_label = " ".join([part.capitalize() for part in parts])
|
39 |
-
|
40 |
-
|
41 |
api_url = f'https://api.api-ninjas.com/v1/celebrity?name={formatted_label}'
|
42 |
-
|
43 |
-
|
44 |
-
response = requests.get(api_url, headers={'X-Api-Key': 'token'})
|
45 |
if response.status_code == 200:
|
46 |
-
return
|
47 |
else:
|
48 |
return "Description not available."
|
49 |
except Exception as e:
|
@@ -51,23 +25,24 @@ def fetch_info(celebrity_label):
|
|
51 |
traceback.print_exc()
|
52 |
return "Description not available."
|
53 |
|
|
|
54 |
def fetch_images_for_label(label):
|
55 |
label_data = dataset['train'].filter(lambda example: example['label'] == label)
|
56 |
images = [example['image'] for example in label_data]
|
57 |
return images
|
58 |
|
59 |
-
|
60 |
def predict_and_fetch_images(input_image):
|
61 |
try:
|
62 |
-
|
63 |
predictions = image_classifier(input_image)
|
64 |
top_prediction = max(predictions, key=lambda x: x['score'])
|
65 |
label, score = top_prediction['label'], top_prediction['score']
|
66 |
|
67 |
-
|
68 |
images = fetch_images_for_label(label)
|
69 |
|
70 |
-
|
71 |
info = fetch_info(label)
|
72 |
|
73 |
return label, score, images, info, "No Error"
|
@@ -77,20 +52,22 @@ def predict_and_fetch_images(input_image):
|
|
77 |
return "Error during prediction", 0, [], "N/A", str(e)
|
78 |
|
79 |
|
|
|
|
|
80 |
iface = gr.Interface(
|
81 |
fn=predict_and_fetch_images,
|
82 |
inputs=gr.Image(type="pil", label="Upload or Take a Snapshot"),
|
83 |
outputs=[
|
84 |
-
"text",
|
85 |
-
"number",
|
86 |
-
gr.Gallery(label="Lookalike Images"),
|
87 |
-
"
|
88 |
gr.Textbox(type="text", label="Feedback", placeholder="Provide feedback here") # Feedback textbox
|
89 |
],
|
90 |
live=True,
|
91 |
-
title="Celebrity Lookalike Predictor",
|
92 |
description="Take a snapshot or upload an image to see which celebrity you look like!"
|
93 |
)
|
94 |
|
95 |
-
|
96 |
iface.launch()
|
|
|
3 |
from datasets import load_dataset
|
4 |
import requests
|
5 |
import traceback
|
6 |
+
import os
|
7 |
|
8 |
dataset = load_dataset("SaladSlayer00/twin_matcher")
|
9 |
|
10 |
image_classifier = pipeline("image-classification", model="SaladSlayer00/twin_matcher")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def fetch_info(celebrity_label):
|
13 |
try:
|
|
|
14 |
parts = celebrity_label.split("_")
|
15 |
formatted_label = " ".join([part.capitalize() for part in parts])
|
|
|
|
|
16 |
api_url = f'https://api.api-ninjas.com/v1/celebrity?name={formatted_label}'
|
17 |
+
token = os.getenv('TOKEN')
|
18 |
+
response = requests.get(api_url, headers={'X-Api-Key': token})
|
|
|
19 |
if response.status_code == 200:
|
20 |
+
return response.text
|
21 |
else:
|
22 |
return "Description not available."
|
23 |
except Exception as e:
|
|
|
25 |
traceback.print_exc()
|
26 |
return "Description not available."
|
27 |
|
28 |
+
# Function to fetch images for the predicted label from the Hugging Face dataset
|
29 |
def fetch_images_for_label(label):
|
30 |
label_data = dataset['train'].filter(lambda example: example['label'] == label)
|
31 |
images = [example['image'] for example in label_data]
|
32 |
return images
|
33 |
|
34 |
+
# Function to process the image, predict, and fetch images and info
|
35 |
def predict_and_fetch_images(input_image):
|
36 |
try:
|
37 |
+
# Use the image classifier pipeline
|
38 |
predictions = image_classifier(input_image)
|
39 |
top_prediction = max(predictions, key=lambda x: x['score'])
|
40 |
label, score = top_prediction['label'], top_prediction['score']
|
41 |
|
42 |
+
# Fetch images for the predicted label
|
43 |
images = fetch_images_for_label(label)
|
44 |
|
45 |
+
# Fetch information for the predicted label
|
46 |
info = fetch_info(label)
|
47 |
|
48 |
return label, score, images, info, "No Error"
|
|
|
52 |
return "Error during prediction", 0, [], "N/A", str(e)
|
53 |
|
54 |
|
55 |
+
|
56 |
+
# Gradio interface
|
57 |
iface = gr.Interface(
|
58 |
fn=predict_and_fetch_images,
|
59 |
inputs=gr.Image(type="pil", label="Upload or Take a Snapshot"),
|
60 |
outputs=[
|
61 |
+
"text", # Predicted label
|
62 |
+
"number", # Prediction score
|
63 |
+
gr.Gallery(label="Lookalike Images"), # Slideshow component for images
|
64 |
+
"text", # Info/Description
|
65 |
gr.Textbox(type="text", label="Feedback", placeholder="Provide feedback here") # Feedback textbox
|
66 |
],
|
67 |
live=True,
|
68 |
+
title="Celebrity Lookalike Predictor with Description and Feedback",
|
69 |
description="Take a snapshot or upload an image to see which celebrity you look like!"
|
70 |
)
|
71 |
|
72 |
+
# Launch the Gradio interface
|
73 |
iface.launch()
|