Spaces:
Running
Running
File size: 2,982 Bytes
fcf2b60 f371400 d96a61c f371400 f4fa1d2 92ef534 131248e 92ef534 f4fa1d2 131248e 92ef534 6fe96dd f371400 f2b289e 873b4f8 6fe96dd 92ef534 873b4f8 6fe96dd 92ef534 6fe96dd 873b4f8 6fe96dd 92ef534 aa6dc6d fcf2b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
with gr.Blocks(css="""
#my-img img {
width: 50% !important;
display: block;
margin-left: auto;
margin-right: auto;
}
""") as demo:
gr.HTML("""
<div align="center">
<h1>Elastic Reasoning
<div>
<div>
<h3>🚀 Scalable Chain of Thoughts via Elastic Reasoning 🌟
</div>
</div>
<br>
</div>
""")
gr.Markdown(
"""
[](https://arxiv.org/pdf/2505.05315)
[](https://huggingface.co/collections/Salesforce/elastic-reasoning-682b4bba108d6ea0a8bab275)
[](https://github.com/SalesforceAIResearch/Elastic-Reasoning)
## Table of Contents
- [Introduction](#introduction)
- [Environment Setup](#environment-setup)
- [Training](#training)
- [Evaluation](#evaluation)
## Introduction
We propose **Elastic Reasoning**, a novel framework for scalable chain of thoughts
that explicitly separates reasoning into two phases—`thinking and solution`—with
independently allocated budgets. At test time, Elastic Reasoning prioritize that
completeness of solution segments, significantly improving reliability under tight
resource constraints. To train models that are robust to truncated thinking, we
introduce a lightweight `budget-constrained rollout` strategy, integrated into GRPO,
which teaches the model to reason adaptively when the thinking process is cut
short and generalizes effectively to unseen budget constraints without additional
training.
""")
gr.Image("figs/framework.png", label="Framework", show_label=False, elem_id="my-img")
gr.Markdown(
"""
**Main Takeaways**
1. ✂️ Thinking + Solution are explicitly separated with independent budgets — boosting reliability under tight compute constraints.
2. 🧠 Budget-Constrained Rollout: We train models to handle truncated reasoning using GRPO.
3. 📈 Flexible scalability: Robust performance across diverse inference budgets on reasoning benchmarks like AIME and LiveCodeBench.
4. ⚙️ Better performance with fewer tokens: Our trained model generates outputs that are 30% shorter while maintaining (or even improving) accuracy.
""")
gr.HTML("""
<p align="center">
<img src="figs/aime.png" width="46%" />
<img src="figs/livecode.png" width="48%" />
</p>
<p align="center">
<img src="figs/codetable.png" width="90%" />
</p>
""")
gr.Markdown(
"""
## Citation
```bibtex
@article{xu2025scalable,
title={Scalable Chain of Thoughts via Elastic Reasoning},
author={Xu, Yuhui and Dong, Hanze and Wang, Lei and Sahoo, Doyen and Li, Junnan and Xiong, Caiming},
journal={arXiv preprint arXiv:2505.05315},
year={2025}
}
```
""")
if __name__ == "__main__":
demo.launch()
|