Spaces:
Running
Running
remove Trust & Safety tab
Browse files- app.py +33 -189
- src/display/utils.py +6 -6
- src/populate.py +1 -1
app.py
CHANGED
@@ -3,14 +3,13 @@ import pandas as pd
|
|
3 |
|
4 |
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
5 |
from src.display.css_html_js import custom_css
|
6 |
-
from src.display.utils import COLS, TS_COLS,
|
7 |
from src.envs import CRM_RESULTS_PATH
|
8 |
from src.populate import get_leaderboard_df_crm
|
9 |
|
10 |
-
original_df
|
11 |
|
12 |
leaderboard_df = original_df.copy()
|
13 |
-
leaderboard_ts_df = ts_df.copy()
|
14 |
# leaderboard_df = leaderboard_df.style.format({"accuracy_metric_average": "{0:.2f}"})
|
15 |
|
16 |
|
@@ -39,18 +38,6 @@ def update_table(
|
|
39 |
return df.style.map(highlight_cost_band_low, props="background-color: #b3d5a4")
|
40 |
|
41 |
|
42 |
-
def update_ts_table(
|
43 |
-
hidden_df: pd.DataFrame,
|
44 |
-
columns: list,
|
45 |
-
llm_query: list,
|
46 |
-
llm_provider_query: list,
|
47 |
-
):
|
48 |
-
filtered_df = filter_llm_func(hidden_df, llm_query)
|
49 |
-
filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query)
|
50 |
-
df = select_columns_ts_table(filtered_df, columns)
|
51 |
-
return df
|
52 |
-
|
53 |
-
|
54 |
# def highlight_cols(x):
|
55 |
# df = x.copy()
|
56 |
# df.loc[:, :] = "color: black"
|
@@ -90,21 +77,6 @@ def init_leaderboard_df(
|
|
90 |
)
|
91 |
|
92 |
|
93 |
-
def init_leaderboard_ts_df(
|
94 |
-
leaderboard_df: pd.DataFrame,
|
95 |
-
columns: list,
|
96 |
-
llm_query: list,
|
97 |
-
llm_provider_query: list,
|
98 |
-
):
|
99 |
-
|
100 |
-
return update_ts_table(
|
101 |
-
leaderboard_df,
|
102 |
-
columns,
|
103 |
-
llm_query,
|
104 |
-
llm_provider_query,
|
105 |
-
)
|
106 |
-
|
107 |
-
|
108 |
def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) -> pd.DataFrame:
|
109 |
return df[df["Accuracy Method"] == accuracy_method_query]
|
110 |
|
@@ -139,6 +111,10 @@ def filter_llm_provider_func(df: pd.DataFrame, llm_provider_query: list) -> pd.D
|
|
139 |
return df[df["LLM Provider"].isin(llm_provider_query)]
|
140 |
|
141 |
|
|
|
|
|
|
|
|
|
142 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
143 |
always_here_cols = [
|
144 |
AutoEvalColumn.model.name,
|
@@ -148,14 +124,6 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
148 |
return filtered_df
|
149 |
|
150 |
|
151 |
-
def select_columns_ts_table(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
152 |
-
always_here_cols = [
|
153 |
-
TSEvalColumn.model.name,
|
154 |
-
]
|
155 |
-
filtered_df = df[always_here_cols + [c for c in TS_COLS if c in df.columns and c in columns]]
|
156 |
-
return filtered_df
|
157 |
-
|
158 |
-
|
159 |
demo = gr.Blocks(css=custom_css)
|
160 |
with demo:
|
161 |
gr.HTML(TITLE)
|
@@ -164,34 +132,17 @@ with demo:
|
|
164 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
165 |
with gr.TabItem("🏅 Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
166 |
with gr.Row():
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
c.name
|
179 |
-
for c in fields(AutoEvalColumn)
|
180 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
181 |
-
],
|
182 |
-
label="Select columns to show",
|
183 |
-
elem_id="column-select",
|
184 |
-
interactive=True,
|
185 |
-
)
|
186 |
-
# with gr.Column(min_width=320):
|
187 |
-
# # with gr.Box(elem_id="box-filter"):
|
188 |
-
# filter_columns_type = gr.CheckboxGroup(
|
189 |
-
# label="Model types",
|
190 |
-
# choices=[t.to_str() for t in ModelType],
|
191 |
-
# value=[t.to_str() for t in ModelType],
|
192 |
-
# interactive=True,
|
193 |
-
# elem_id="filter-columns-type",
|
194 |
-
# )
|
195 |
with gr.Row():
|
196 |
with gr.Column():
|
197 |
filter_llm = gr.CheckboxGroup(
|
@@ -202,13 +153,22 @@ with demo:
|
|
202 |
interactive=True,
|
203 |
)
|
204 |
with gr.Column():
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
with gr.Row():
|
213 |
filter_use_case = gr.CheckboxGroup(
|
214 |
choices=list(original_df["Use Case Name"].unique()),
|
@@ -244,14 +204,6 @@ with demo:
|
|
244 |
# multiselect=True,
|
245 |
# interactive=True,
|
246 |
# )
|
247 |
-
# with gr.Column():
|
248 |
-
# filter_metric_area = gr.CheckboxGroup(
|
249 |
-
# choices=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
|
250 |
-
# value=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
|
251 |
-
# label="Metric Area",
|
252 |
-
# info="",
|
253 |
-
# interactive=True,
|
254 |
-
# )
|
255 |
with gr.Column():
|
256 |
filter_accuracy_method = gr.Radio(
|
257 |
choices=["Manual", "Auto"],
|
@@ -267,22 +219,6 @@ with demo:
|
|
267 |
info="Range: 0.0 to 4.0",
|
268 |
interactive=True,
|
269 |
)
|
270 |
-
# with gr.Column():
|
271 |
-
# filter_llm = gr.CheckboxGroup(
|
272 |
-
# choices=list(original_df["Model Name"].unique()),
|
273 |
-
# value=list(leaderboard_df["Model Name"].unique()),
|
274 |
-
# label="Model Name",
|
275 |
-
# info="",
|
276 |
-
# interactive=True,
|
277 |
-
# )
|
278 |
-
# with gr.Column():
|
279 |
-
# filter_llm_provider = gr.CheckboxGroup(
|
280 |
-
# choices=list(original_df["LLM Provider"].unique()),
|
281 |
-
# value=list(leaderboard_df["LLM Provider"].unique()),
|
282 |
-
# label="LLM Provider",
|
283 |
-
# info="",
|
284 |
-
# interactive=True,
|
285 |
-
# )
|
286 |
|
287 |
leaderboard_table = gr.components.Dataframe(
|
288 |
# value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
@@ -311,19 +247,6 @@ with demo:
|
|
311 |
datatype=TYPES,
|
312 |
visible=False,
|
313 |
)
|
314 |
-
# search_bar.submit(
|
315 |
-
# update_table,
|
316 |
-
# [
|
317 |
-
# hidden_leaderboard_table_for_search,
|
318 |
-
# shown_columns,
|
319 |
-
# filter_columns_type,
|
320 |
-
# filter_columns_precision,
|
321 |
-
# filter_columns_size,
|
322 |
-
# deleted_models_visibility,
|
323 |
-
# search_bar,
|
324 |
-
# ],
|
325 |
-
# leaderboard_table,
|
326 |
-
# )
|
327 |
for selector in [
|
328 |
shown_columns,
|
329 |
filter_llm,
|
@@ -333,10 +256,6 @@ with demo:
|
|
333 |
filter_use_case_area,
|
334 |
filter_use_case,
|
335 |
filter_use_case_type,
|
336 |
-
# filter_columns_type,
|
337 |
-
# filter_columns_precision,
|
338 |
-
# filter_columns_size,
|
339 |
-
# deleted_models_visibility,
|
340 |
]:
|
341 |
selector.change(
|
342 |
update_table,
|
@@ -350,81 +269,6 @@ with demo:
|
|
350 |
filter_use_case_area,
|
351 |
filter_use_case,
|
352 |
filter_use_case_type,
|
353 |
-
# filter_columns_type,
|
354 |
-
# filter_columns_precision,
|
355 |
-
# filter_columns_size,
|
356 |
-
# deleted_models_visibility,
|
357 |
-
# search_bar,
|
358 |
-
],
|
359 |
-
leaderboard_table,
|
360 |
-
queue=True,
|
361 |
-
)
|
362 |
-
with gr.TabItem("🏅 Trust & Safety", elem_id="llm-benchmark-tab-table", id=2):
|
363 |
-
with gr.Row():
|
364 |
-
with gr.Column():
|
365 |
-
with gr.Row():
|
366 |
-
shown_columns = gr.CheckboxGroup(
|
367 |
-
choices=[c.name for c in fields(TSEvalColumn) if not c.hidden and not c.never_hidden],
|
368 |
-
value=[
|
369 |
-
c.name
|
370 |
-
for c in fields(TSEvalColumn)
|
371 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
372 |
-
],
|
373 |
-
label="Select columns to show",
|
374 |
-
elem_id="column-select",
|
375 |
-
interactive=True,
|
376 |
-
)
|
377 |
-
with gr.Row():
|
378 |
-
with gr.Column():
|
379 |
-
filter_llm = gr.CheckboxGroup(
|
380 |
-
choices=list(ts_df["Model Name"].unique()),
|
381 |
-
value=list(ts_df["Model Name"].unique()),
|
382 |
-
label="Model Name",
|
383 |
-
info="",
|
384 |
-
interactive=True,
|
385 |
-
)
|
386 |
-
with gr.Column():
|
387 |
-
filter_llm_provider = gr.CheckboxGroup(
|
388 |
-
choices=list(ts_df["LLM Provider"].unique()),
|
389 |
-
value=list(ts_df["LLM Provider"].unique()),
|
390 |
-
label="LLM Provider",
|
391 |
-
info="",
|
392 |
-
interactive=True,
|
393 |
-
)
|
394 |
-
|
395 |
-
leaderboard_table = gr.components.Dataframe(
|
396 |
-
value=init_leaderboard_ts_df(
|
397 |
-
leaderboard_ts_df,
|
398 |
-
shown_columns.value,
|
399 |
-
filter_llm.value,
|
400 |
-
filter_llm_provider.value,
|
401 |
-
),
|
402 |
-
headers=[c.name for c in fields(TSEvalColumn) if c.never_hidden] + shown_columns.value,
|
403 |
-
datatype=TS_TYPES,
|
404 |
-
elem_id="leaderboard-table",
|
405 |
-
interactive=False,
|
406 |
-
visible=True,
|
407 |
-
)
|
408 |
-
|
409 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
410 |
-
value=ts_df[TS_COLS],
|
411 |
-
headers=TS_COLS,
|
412 |
-
datatype=TS_TYPES,
|
413 |
-
visible=False,
|
414 |
-
)
|
415 |
-
|
416 |
-
for selector in [
|
417 |
-
shown_columns,
|
418 |
-
filter_llm,
|
419 |
-
filter_llm_provider,
|
420 |
-
]:
|
421 |
-
selector.change(
|
422 |
-
update_ts_table,
|
423 |
-
[
|
424 |
-
hidden_leaderboard_table_for_search,
|
425 |
-
shown_columns,
|
426 |
-
filter_llm,
|
427 |
-
filter_llm_provider,
|
428 |
],
|
429 |
leaderboard_table,
|
430 |
queue=True,
|
|
|
3 |
|
4 |
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
5 |
from src.display.css_html_js import custom_css
|
6 |
+
from src.display.utils import COLS, TS_COLS, TYPES, AutoEvalColumn, fields
|
7 |
from src.envs import CRM_RESULTS_PATH
|
8 |
from src.populate import get_leaderboard_df_crm
|
9 |
|
10 |
+
original_df = get_leaderboard_df_crm(CRM_RESULTS_PATH, COLS, TS_COLS)
|
11 |
|
12 |
leaderboard_df = original_df.copy()
|
|
|
13 |
# leaderboard_df = leaderboard_df.style.format({"accuracy_metric_average": "{0:.2f}"})
|
14 |
|
15 |
|
|
|
38 |
return df.style.map(highlight_cost_band_low, props="background-color: #b3d5a4")
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# def highlight_cols(x):
|
42 |
# df = x.copy()
|
43 |
# df.loc[:, :] = "color: black"
|
|
|
77 |
)
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) -> pd.DataFrame:
|
81 |
return df[df["Accuracy Method"] == accuracy_method_query]
|
82 |
|
|
|
111 |
return df[df["LLM Provider"].isin(llm_provider_query)]
|
112 |
|
113 |
|
114 |
+
def filter_metric_area_func(df: pd.DataFrame, metric_area_query: list) -> pd.DataFrame:
|
115 |
+
return df[df["Metric Area"].isin(metric_area_query)]
|
116 |
+
|
117 |
+
|
118 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
119 |
always_here_cols = [
|
120 |
AutoEvalColumn.model.name,
|
|
|
124 |
return filtered_df
|
125 |
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
demo = gr.Blocks(css=custom_css)
|
128 |
with demo:
|
129 |
gr.HTML(TITLE)
|
|
|
132 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
133 |
with gr.TabItem("🏅 Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
|
134 |
with gr.Row():
|
135 |
+
shown_columns = gr.CheckboxGroup(
|
136 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
|
137 |
+
value=[
|
138 |
+
c.name
|
139 |
+
for c in fields(AutoEvalColumn)
|
140 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
141 |
+
],
|
142 |
+
label="Select columns to show",
|
143 |
+
elem_id="column-select",
|
144 |
+
interactive=True,
|
145 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
with gr.Row():
|
147 |
with gr.Column():
|
148 |
filter_llm = gr.CheckboxGroup(
|
|
|
153 |
interactive=True,
|
154 |
)
|
155 |
with gr.Column():
|
156 |
+
with gr.Row():
|
157 |
+
filter_llm_provider = gr.CheckboxGroup(
|
158 |
+
choices=list(original_df["LLM Provider"].unique()),
|
159 |
+
value=list(original_df["LLM Provider"].unique()),
|
160 |
+
label="LLM Provider",
|
161 |
+
info="",
|
162 |
+
interactive=True,
|
163 |
+
)
|
164 |
+
with gr.Row():
|
165 |
+
filter_metric_area = gr.CheckboxGroup(
|
166 |
+
choices=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
|
167 |
+
value=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
|
168 |
+
label="Metric Area",
|
169 |
+
info="",
|
170 |
+
interactive=True,
|
171 |
+
)
|
172 |
with gr.Row():
|
173 |
filter_use_case = gr.CheckboxGroup(
|
174 |
choices=list(original_df["Use Case Name"].unique()),
|
|
|
204 |
# multiselect=True,
|
205 |
# interactive=True,
|
206 |
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
with gr.Column():
|
208 |
filter_accuracy_method = gr.Radio(
|
209 |
choices=["Manual", "Auto"],
|
|
|
219 |
info="Range: 0.0 to 4.0",
|
220 |
interactive=True,
|
221 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
leaderboard_table = gr.components.Dataframe(
|
224 |
# value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
|
|
247 |
datatype=TYPES,
|
248 |
visible=False,
|
249 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
for selector in [
|
251 |
shown_columns,
|
252 |
filter_llm,
|
|
|
256 |
filter_use_case_area,
|
257 |
filter_use_case,
|
258 |
filter_use_case_type,
|
|
|
|
|
|
|
|
|
259 |
]:
|
260 |
selector.change(
|
261 |
update_table,
|
|
|
269 |
filter_use_case_area,
|
270 |
filter_use_case,
|
271 |
filter_use_case_type,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
],
|
273 |
leaderboard_table,
|
274 |
queue=True,
|
src/display/utils.py
CHANGED
@@ -26,26 +26,26 @@ auto_eval_column_dict.append(
|
|
26 |
["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]
|
27 |
)
|
28 |
auto_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)])
|
29 |
-
auto_eval_column_dict.append(["use_case_name", ColumnContent, ColumnContent("Use Case Name", "markdown",
|
30 |
auto_eval_column_dict.append(["use_case_type", ColumnContent, ColumnContent("Use Case Type", "markdown", False)])
|
31 |
auto_eval_column_dict.append(["accuracy_method", ColumnContent, ColumnContent("Accuracy Method", "markdown", False)])
|
32 |
# Accuracy metrics
|
33 |
-
auto_eval_column_dict.append(["accuracy_metric_average", ColumnContent, ColumnContent("Accuracy", "markdown",
|
34 |
auto_eval_column_dict.append(
|
35 |
[
|
36 |
"accuracy_metric_instruction_following",
|
37 |
ColumnContent,
|
38 |
-
ColumnContent("Instruction Following", "markdown",
|
39 |
]
|
40 |
)
|
41 |
auto_eval_column_dict.append(
|
42 |
-
["accuracy_metric_completeness", ColumnContent, ColumnContent("Completeness", "markdown",
|
43 |
)
|
44 |
auto_eval_column_dict.append(
|
45 |
-
["accuracy_metric_conciseness", ColumnContent, ColumnContent("Conciseness", "markdown",
|
46 |
)
|
47 |
auto_eval_column_dict.append(
|
48 |
-
["accuracy_metric_factuality", ColumnContent, ColumnContent("Factuality", "markdown",
|
49 |
)
|
50 |
# Speed (Latency) & Cost metrics
|
51 |
auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)])
|
|
|
26 |
["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]
|
27 |
)
|
28 |
auto_eval_column_dict.append(["model_provider", ColumnContent, ColumnContent("LLM Provider", "markdown", True)])
|
29 |
+
auto_eval_column_dict.append(["use_case_name", ColumnContent, ColumnContent("Use Case Name", "markdown", True)])
|
30 |
auto_eval_column_dict.append(["use_case_type", ColumnContent, ColumnContent("Use Case Type", "markdown", False)])
|
31 |
auto_eval_column_dict.append(["accuracy_method", ColumnContent, ColumnContent("Accuracy Method", "markdown", False)])
|
32 |
# Accuracy metrics
|
33 |
+
auto_eval_column_dict.append(["accuracy_metric_average", ColumnContent, ColumnContent("Accuracy", "markdown", True)])
|
34 |
auto_eval_column_dict.append(
|
35 |
[
|
36 |
"accuracy_metric_instruction_following",
|
37 |
ColumnContent,
|
38 |
+
ColumnContent("Instruction Following", "markdown", True),
|
39 |
]
|
40 |
)
|
41 |
auto_eval_column_dict.append(
|
42 |
+
["accuracy_metric_completeness", ColumnContent, ColumnContent("Completeness", "markdown", True)]
|
43 |
)
|
44 |
auto_eval_column_dict.append(
|
45 |
+
["accuracy_metric_conciseness", ColumnContent, ColumnContent("Conciseness", "markdown", True)]
|
46 |
)
|
47 |
auto_eval_column_dict.append(
|
48 |
+
["accuracy_metric_factuality", ColumnContent, ColumnContent("Factuality", "markdown", True)]
|
49 |
)
|
50 |
# Speed (Latency) & Cost metrics
|
51 |
auto_eval_column_dict.append(["latency", ColumnContent, ColumnContent("Response Time (Sec)", "markdown", True)])
|
src/populate.py
CHANGED
@@ -67,4 +67,4 @@ def get_leaderboard_df_crm(
|
|
67 |
by=[AutoEvalColumn.accuracy_metric_average.name], ascending=False
|
68 |
)
|
69 |
leaderboard_accuracy_df = leaderboard_accuracy_df[accuracy_cols].round(decimals=2)
|
70 |
-
return leaderboard_accuracy_df
|
|
|
67 |
by=[AutoEvalColumn.accuracy_metric_average.name], ascending=False
|
68 |
)
|
69 |
leaderboard_accuracy_df = leaderboard_accuracy_df[accuracy_cols].round(decimals=2)
|
70 |
+
return leaderboard_accuracy_df
|