Spaces:
Runtime error
Runtime error
# from flair.data import Sentence | |
# from flair.models import SequenceTagger | |
# import streamlit as st | |
# # load tagger | |
# tagger = SequenceTagger.load("flair/ner-english-large") | |
# # make example sentence | |
# text=st.text_area("Enter the text to detect it's named entities") | |
# sentence = Sentence(text) | |
# # predict NER tags | |
# tagger.predict(sentence) | |
# # print sentence | |
# print(sentence) | |
# # print predicted NER spans | |
# print('The following NER tags are found:') | |
# # iterate over entities and printx | |
# for entity in sentence.get_spans('ner'): | |
# print(entity) | |
import easyocr | |
import cv2 | |
import requests | |
import re | |
from PIL import Image | |
import streamlit as st | |
# import os | |
# Load the EasyOCR reader | |
reader = easyocr.Reader(['en']) | |
# key=os.environ.getattribute("api_key") | |
# print(key) | |
API_URL = "https://api-inference.huggingface.co/models/flair/ner-english-large" | |
headers = {"Authorization": st.secrets["api_key"]} | |
## Image uploading function ## | |
def image_upload_and_ocr(reader): | |
uploaded_file=st.file_uploader(label=':red[**please upload a busines card** :sunglasses:]',type=['jpeg','jpg','png','webp']) | |
if uploaded_file is not None: | |
image=Image.open(uploaded_file) | |
image=image.resize((640,480)) | |
result2 = reader.readtext(image) | |
# result2=result | |
texts = [item[1] for item in result2] | |
result=' '.join(texts) | |
return result2,result | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
def get_ner_from_transformer(output): | |
data = output | |
named_entities = {} | |
for entity in data: | |
entity_type = entity['entity_group'] | |
entity_text = entity['word'] | |
if entity_type not in named_entities: | |
named_entities[entity_type] = [] | |
named_entities[entity_type].append(entity_text) | |
# for entity_type, entities in named_entities.items(): | |
# print(f"{entity_type}: {', '.join(entities)}") | |
return entity_type,named_entities | |
### DRAWING DETECTION FUNCTION ### | |
def drawing_detection(image): | |
# Draw bounding boxes around the detected text regions | |
for detection in image: | |
# Extract the bounding box coordinates | |
points = detection[0] # List of points defining the bounding box | |
x1, y1 = int(points[0][0]), int(points[0][1]) # Top-left corner | |
x2, y2 = int(points[2][0]), int(points[2][1]) # Bottom-right corner | |
# Draw the bounding box | |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
# Add the detected text | |
text = detection[1] | |
cv2.putText(image, text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) | |
st.image(image,caption='Detected text on the card ',width=710) | |
return image | |
st.title("_Business_ card data extractor using opencv and streamlit :sunglasses:") | |
res2,res=image_upload_and_ocr(reader) | |
darwing_image=drawing_detection(res2) | |
output = query({ | |
"inputs": res, | |
}) | |
entity_type,named_entities= get_ner_from_transformer(output) | |
st.write(entity_type) | |
st.write(named_entities) |