Spaces:
Sleeping
Sleeping
import os | |
#DSPY | |
import dspy | |
from dspy import Prediction | |
from dspy.evaluate import Evaluate | |
from dspy import Prediction | |
from dspy.teleprompt import BootstrapFewShot | |
from dspy.teleprompt import BootstrapFewShotWithRandomSearch | |
# Data handling | |
# import pandas as pd | |
# Calculations and formatting | |
import re | |
from decimal import Decimal | |
# UI | |
import gradio as gr | |
from gradio_pdf import PDF | |
# PDF handling | |
import pdfplumber | |
pdf_examples_dir = './pdfexamples/' | |
model = dspy.OpenAI( | |
model='gpt-3.5-turbo-0125', | |
api_key=os.getenv('OPENAI_PROJECT_KEY'), | |
max_tokens=2000, | |
temperature=0.01) | |
dspy.settings.configure(lm=model) | |
# Utils | |
def parse_CSV_string(csv_string): | |
# Parses a CSV string into a unique list | |
return list(set(map(str.lower, map(str.strip, csv_string.split(','))))) | |
def parse_list_of_CSV_strings(list_of_csv_strings): | |
# Parses a list of CSV strings with invoice numbers into a list of lists | |
parsed_csv_list = [] | |
for csv_string in list_of_csv_strings: | |
parsed_csv_list.append(parse_CSV_string(csv_string)) | |
return parsed_csv_list | |
def parse_invoice_number(s): | |
# Return the invoice number in Siemens' format if found, otherwise just return the string | |
rp = r'^\s*?([\S\d]+\d{6})' | |
m = re.search(rp, s) | |
return m.group(1) if m else s | |
def standardize_number(s): | |
# Find the last occurrence of a comma or period | |
last_separator_index = max(s.rfind(','), s.rfind('.')) | |
if last_separator_index != -1: | |
# Split the string into two parts | |
before_separator = s[:last_separator_index] | |
after_separator = s[last_separator_index+1:] | |
# Clean the first part of any commas, periods, or whitespace | |
before_separator_cleaned = re.sub(r'[.,\s]', '', before_separator) | |
# Ensure the decimal part starts with a period, even if it was a comma | |
standardized_s = before_separator_cleaned + '.' + after_separator | |
else: | |
# If there's no separator, just remove commas, periods, or whitespace | |
standardized_s = re.sub(r'[.,\s]', '', s) | |
return standardized_s | |
def remove_chars_after_last_digit(s): | |
# Remove any non-digit characters following the last digit in the string | |
return re.sub(r'(?<=\d)[^\d]*$', '', s) | |
def clean_text(s): | |
# This pattern looks for: | |
# - Optional non-digit or non-negative sign characters followed by whitespace (if any) | |
# - Followed by any characters until a digit is found in the word | |
# It then replaces this matched portion with the remaining part of the word from the first digit | |
# cleaned_s = re.sub(r'\S*?\s*?(\S*\d\S*)', r'\1', s) | |
cleaned_s = re.sub(r'[^\d-]*\s?(\S*\d\S*)', r'\1', s) | |
return cleaned_s | |
def format_text_decimal(text_decimal): | |
# Run functions to format a text decimal | |
return clean_text(remove_chars_after_last_digit(standardize_number(text_decimal.strip().lower()))) | |
# PDF handling | |
def extract_text_using_pdfplumber(file_path): | |
# TODO: add check for text vs images padf | |
with pdfplumber.open(file_path) as pdf: | |
extracted_text = '' | |
for i, page in enumerate(pdf.pages): | |
# Remove duplicate characters from the page. | |
deduped_page = page.dedupe_chars(tolerance=1) | |
extracted_text += deduped_page.extract_text() | |
return extracted_text | |
def get_PDF_examples(directory): | |
example_pdf_files = [] | |
for filename in os.listdir(directory): | |
if filename.endswith('.pdf'): | |
example_pdf_files.append(os.path.join(directory, filename)) | |
return example_pdf_files | |
# Signatures and Models | |
class FindInvoiceNumberColumns(dspy.Signature): | |
"""Given an input remittance letter, return a list of column header names that may contain invoice numbers.""" | |
content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines | |
column_header_names = dspy.OutputField(desc="comma-separated list of column header names that may contain "\ | |
"invoice numbers") | |
class InvoiceColumnHeaders(dspy.Module): | |
def __init__(self): | |
super().__init__() | |
# self.potential_invoice_column_headers = dspy.ChainOfThought(FindInvoiceNumberColumns) | |
self.potential_invoice_column_headers = dspy.Predict(FindInvoiceNumberColumns) # Ervin suggests Predict | |
def forward(self, file_content): | |
prediction = self.potential_invoice_column_headers(content=file_content) | |
# NOTE: Instead of a prediction we could return a simple list (for consistency with my other Modules) | |
# or even a parsed list (not CSV) | |
return prediction | |
# This creates a new Prediction object adding the File Content | |
# return Prediction(content=file_content, column_header_names=prediction.column_header_names, rationale=prediction.rationale) | |
# Creating a new Prediction object with extra data can be useful if we need more data for the verification | |
class FindInvoiceList(dspy.Signature): | |
"""Given an input remittance letter and a column header name output a comma-separated list of all invoice numbers """\ | |
"""that belong to that column.""" | |
content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines | |
invoice_column_header = dspy.InputField(desc="invoice column header name") | |
candidate_invoice_numbers = dspy.OutputField(desc="comma-separated list of invoice numbers") | |
class InvoiceList(dspy.Module): | |
def __init__(self): | |
super().__init__() | |
self.find_invoice_headers = InvoiceColumnHeaders() # here we could load a compiled program also | |
self.find_invoice_numbers = dspy.Predict(FindInvoiceList) | |
def forward(self, file_content): | |
# Predict column headers (returns a Prediction with a CSV string in "column_header_names") | |
predict_column_headers = self.find_invoice_headers(file_content=file_content) | |
# Parse CSV into a list | |
potential_invoice_column_headers = parse_CSV_string(predict_column_headers.column_header_names) | |
potential_invoices = [] | |
for header in potential_invoice_column_headers: | |
prediction = self.find_invoice_numbers(content=file_content, invoice_column_header=header) | |
potential_invoices.append(prediction.candidate_invoice_numbers) | |
# Remove duplicates | |
# potential_invoices = list(set(potential_invoices)) | |
potential_invoices = parse_list_of_CSV_strings(potential_invoices) # TODO: remove duplicated lists | |
# return Prediction(candidate_invoice_numbers=candidates, column_header_names=col_names) | |
# return potential_invoices | |
# We need to return a Prediction for the Evaluate function later on | |
return Prediction(candidate_invoice_numbers=potential_invoices) | |
class FindTotalAmountColumns(dspy.Signature): | |
"""Given an input remittance letter, return a list of column header names that may contain the total payment amount.""" | |
content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines | |
total_column_header_names = dspy.OutputField(desc="comma-separated list of column header names that may contain "\ | |
"the remittance letter total payment amount") | |
class TotalAmountColumnHeaders(dspy.Module): | |
def __init__(self): | |
super().__init__() | |
self.potential_total_amount_column_headers = dspy.Predict(FindTotalAmountColumns) | |
def forward(self, file_content): | |
prediction = self.potential_total_amount_column_headers(content=file_content) | |
return prediction | |
class FindTotalAmount(dspy.Signature): | |
"""Given an input remittance letter and a column header name output the total payment amount """\ | |
"""that belongs to that column.""" | |
content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines | |
total_amount_column_header = dspy.InputField(desc="total amount header name") | |
total_amount = dspy.OutputField(desc="total payment amount") | |
class RemittanceLetterTotalAmount(dspy.Module): | |
def __init__(self): | |
super().__init__() | |
# self.find_invoice_list = InvoiceList() | |
self.find_total_amount_header = TotalAmountColumnHeaders() | |
self.find_total_amount = dspy.Predict(FindTotalAmount) | |
def forward(self, file_content): | |
# Predict invoice list - we could do this here, but let's just call the 2 modules from a function instead | |
# if we called the invoice list prediction here, we should return an object with both the potential total amounts | |
# and the potential invoice lists | |
# predict_invoice_list = self.find_invoice_list(file_content=file_content) | |
# Predict column headers (returns a Prediction with a CSV string in "column_header_names") | |
predict_column_headers = self.find_total_amount_header(file_content=file_content) | |
# Parse CSV into a list | |
potential_total_amount_column_headers = parse_CSV_string(predict_column_headers.total_column_header_names) | |
potential_total_amounts = [] | |
for header in potential_total_amount_column_headers: | |
prediction = self.find_total_amount(content=file_content, total_amount_column_header=header) | |
potential_total_amounts.append(prediction.total_amount) | |
# Remove duplicates | |
potential_total_amounts = list(set(potential_total_amounts)) | |
return Prediction(candidate_total_amounts=potential_total_amounts) # I could just return "prediction" also (references to candidate_total_amounts should change then) | |
# Pipeline | |
def poc_production_pipeline_without_verification(file_content): | |
# TODO: place this in a module - init allows to pass a compiled module and forward handles the data: | |
# so we can evaluate the pipeline (check if any tuple matches the verifier) | |
# Get invoice candidates | |
invoice_list_baseline = InvoiceList() | |
candidate_invoices = invoice_list_baseline(file_content=file_content).candidate_invoice_numbers | |
# Get total amount candidates | |
total_amount_baseline = RemittanceLetterTotalAmount() | |
# Format all decimals | |
candidate_total_amounts = list(map(format_text_decimal, | |
total_amount_baseline(file_content=file_content).candidate_total_amounts)) | |
# For UI visualisation purposes, create a list of tuples where the second tuple value is empty | |
candidate_invoices_for_UI = [] | |
candidate_total_amounts_for_UI = [] | |
for candidate in candidate_invoices: | |
candidate_invoices_for_UI.append((candidate,)) | |
for candidate in candidate_total_amounts: | |
candidate_total_amounts_for_UI.append((candidate,)) | |
return candidate_invoices_for_UI, candidate_total_amounts_for_UI | |
def poc_production_pipeline_without_verification_from_PDF(file_path): | |
file_content = extract_text_using_pdfplumber(file_path) | |
# return str(poc_production_pipeline_without_verification(file_content)) | |
return poc_production_pipeline_without_verification(file_content) | |
# Main app | |
fake_PDF_examples = get_PDF_examples(pdf_examples_dir) | |
remittance_letter_demo_without_verification_from_PDF = gr.Interface( | |
poc_production_pipeline_without_verification_from_PDF, | |
[PDF(label="Remittance advice", height=1000)], | |
[ | |
gr.Dataframe(col_count=(1, 'fixed'), label="", headers=["Retrieved invoice proposals"], wrap=True), | |
gr.Dataframe(col_count=(1, 'fixed'), label="", headers=["Retrieved total amount proposals"], wrap=True) | |
], | |
examples=fake_PDF_examples, | |
allow_flagging='never' | |
) | |
remittance_letter_demo_without_verification_from_PDF.launch() |