Spaces:
Sleeping
Sleeping
Initial Creation
Browse files
app.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
#DSPY
|
4 |
+
import dspy
|
5 |
+
from dspy import Prediction
|
6 |
+
from dspy.evaluate import Evaluate
|
7 |
+
from dspy import Prediction
|
8 |
+
from dspy.teleprompt import BootstrapFewShot
|
9 |
+
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
|
10 |
+
|
11 |
+
# Data handling
|
12 |
+
import pandas as pd
|
13 |
+
from google.colab import drive
|
14 |
+
from google.colab import userdata
|
15 |
+
|
16 |
+
# Calculations and formatting
|
17 |
+
import re
|
18 |
+
from decimal import Decimal
|
19 |
+
|
20 |
+
# UI
|
21 |
+
import gradio as gr
|
22 |
+
from gradio_pdf import PDF
|
23 |
+
|
24 |
+
# PDF handling
|
25 |
+
import pdfplumber
|
26 |
+
|
27 |
+
|
28 |
+
pdf_examples_dir = './pdfexamples/'
|
29 |
+
|
30 |
+
model = dspy.OpenAI(
|
31 |
+
model='gpt-3.5-turbo-0125',
|
32 |
+
api_key=userdata.get('OPENAI_PROJECT_KEY'),
|
33 |
+
max_tokens=2000,
|
34 |
+
temperature=0.01)
|
35 |
+
|
36 |
+
dspy.settings.configure(lm=model)
|
37 |
+
|
38 |
+
|
39 |
+
# Utils
|
40 |
+
def parse_CSV_string(csv_string):
|
41 |
+
# Parses a CSV string into a unique list
|
42 |
+
return list(set(map(str.lower, map(str.strip, csv_string.split(',')))))
|
43 |
+
|
44 |
+
def parse_list_of_CSV_strings(list_of_csv_strings):
|
45 |
+
# Parses a list of CSV strings with invoice numbers into a list of lists
|
46 |
+
parsed_csv_list = []
|
47 |
+
for csv_string in list_of_csv_strings:
|
48 |
+
parsed_csv_list.append(parse_CSV_string(csv_string))
|
49 |
+
return parsed_csv_list
|
50 |
+
|
51 |
+
def parse_invoice_number(s):
|
52 |
+
# Return the invoice number in Siemens' format if found, otherwise just return the string
|
53 |
+
rp = r'^\s*?([\S\d]+\d{6})'
|
54 |
+
m = re.search(rp, s)
|
55 |
+
return m.group(1) if m else s
|
56 |
+
|
57 |
+
def standardize_number(s):
|
58 |
+
# Find the last occurrence of a comma or period
|
59 |
+
last_separator_index = max(s.rfind(','), s.rfind('.'))
|
60 |
+
if last_separator_index != -1:
|
61 |
+
# Split the string into two parts
|
62 |
+
before_separator = s[:last_separator_index]
|
63 |
+
after_separator = s[last_separator_index+1:]
|
64 |
+
|
65 |
+
# Clean the first part of any commas, periods, or whitespace
|
66 |
+
before_separator_cleaned = re.sub(r'[.,\s]', '', before_separator)
|
67 |
+
|
68 |
+
# Ensure the decimal part starts with a period, even if it was a comma
|
69 |
+
standardized_s = before_separator_cleaned + '.' + after_separator
|
70 |
+
else:
|
71 |
+
# If there's no separator, just remove commas, periods, or whitespace
|
72 |
+
standardized_s = re.sub(r'[.,\s]', '', s)
|
73 |
+
|
74 |
+
return standardized_s
|
75 |
+
|
76 |
+
def remove_chars_after_last_digit(s):
|
77 |
+
# Remove any non-digit characters following the last digit in the string
|
78 |
+
return re.sub(r'(?<=\d)[^\d]*$', '', s)
|
79 |
+
|
80 |
+
def clean_text(s):
|
81 |
+
# This pattern looks for:
|
82 |
+
# - Optional non-digit or non-negative sign characters followed by whitespace (if any)
|
83 |
+
# - Followed by any characters until a digit is found in the word
|
84 |
+
# It then replaces this matched portion with the remaining part of the word from the first digit
|
85 |
+
# cleaned_s = re.sub(r'\S*?\s*?(\S*\d\S*)', r'\1', s)
|
86 |
+
cleaned_s = re.sub(r'[^\d-]*\s?(\S*\d\S*)', r'\1', s)
|
87 |
+
return cleaned_s
|
88 |
+
|
89 |
+
def format_text_decimal(text_decimal):
|
90 |
+
# Run functions to format a text decimal
|
91 |
+
return clean_text(remove_chars_after_last_digit(standardize_number(text_decimal.strip().lower())))
|
92 |
+
|
93 |
+
|
94 |
+
# PDF handling
|
95 |
+
def extract_text_using_pdfplumber(file_path):
|
96 |
+
# TODO: add check for text vs images padf
|
97 |
+
with pdfplumber.open(file_path) as pdf:
|
98 |
+
extracted_text = ''
|
99 |
+
for i, page in enumerate(pdf.pages):
|
100 |
+
# Remove duplicate characters from the page.
|
101 |
+
deduped_page = page.dedupe_chars(tolerance=1)
|
102 |
+
extracted_text += deduped_page.extract_text()
|
103 |
+
return extracted_text
|
104 |
+
|
105 |
+
def get_PDF_examples(directory):
|
106 |
+
example_pdf_files = []
|
107 |
+
for filename in os.listdir(directory):
|
108 |
+
if filename.endswith('.pdf'):
|
109 |
+
example_pdf_files.append(os.path.join(directory, filename))
|
110 |
+
return example_pdf_files
|
111 |
+
|
112 |
+
|
113 |
+
# Signatures and Models
|
114 |
+
class FindInvoiceNumberColumns(dspy.Signature):
|
115 |
+
"""Given an input remittance letter, return a list of column header names that may contain invoice numbers."""
|
116 |
+
content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines
|
117 |
+
column_header_names = dspy.OutputField(desc="comma-separated list of column header names that may contain "\
|
118 |
+
"invoice numbers")
|
119 |
+
|
120 |
+
class InvoiceColumnHeaders(dspy.Module):
|
121 |
+
def __init__(self):
|
122 |
+
super().__init__()
|
123 |
+
|
124 |
+
# self.potential_invoice_column_headers = dspy.ChainOfThought(FindInvoiceNumberColumns)
|
125 |
+
self.potential_invoice_column_headers = dspy.Predict(FindInvoiceNumberColumns) # Ervin suggests Predict
|
126 |
+
|
127 |
+
def forward(self, file_content):
|
128 |
+
prediction = self.potential_invoice_column_headers(content=file_content)
|
129 |
+
# NOTE: Instead of a prediction we could return a simple list (for consistency with my other Modules)
|
130 |
+
# or even a parsed list (not CSV)
|
131 |
+
return prediction
|
132 |
+
|
133 |
+
# This creates a new Prediction object adding the File Content
|
134 |
+
# return Prediction(content=file_content, column_header_names=prediction.column_header_names, rationale=prediction.rationale)
|
135 |
+
# Creating a new Prediction object with extra data can be useful if we need more data for the verification
|
136 |
+
|
137 |
+
class FindInvoiceList(dspy.Signature):
|
138 |
+
"""Given an input remittance letter and a column header name output a comma-separated list of all invoice numbers """\
|
139 |
+
"""that belong to that column."""
|
140 |
+
content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines
|
141 |
+
invoice_column_header = dspy.InputField(desc="invoice column header name")
|
142 |
+
candidate_invoice_numbers = dspy.OutputField(desc="comma-separated list of invoice numbers")
|
143 |
+
|
144 |
+
class InvoiceList(dspy.Module):
|
145 |
+
def __init__(self):
|
146 |
+
super().__init__()
|
147 |
+
self.find_invoice_headers = InvoiceColumnHeaders() # here we could load a compiled program also
|
148 |
+
self.find_invoice_numbers = dspy.Predict(FindInvoiceList)
|
149 |
+
|
150 |
+
def forward(self, file_content):
|
151 |
+
# Predict column headers (returns a Prediction with a CSV string in "column_header_names")
|
152 |
+
predict_column_headers = self.find_invoice_headers(file_content=file_content)
|
153 |
+
# Parse CSV into a list
|
154 |
+
potential_invoice_column_headers = parse_CSV_string(predict_column_headers.column_header_names)
|
155 |
+
|
156 |
+
potential_invoices = []
|
157 |
+
|
158 |
+
for header in potential_invoice_column_headers:
|
159 |
+
prediction = self.find_invoice_numbers(content=file_content, invoice_column_header=header)
|
160 |
+
potential_invoices.append(prediction.candidate_invoice_numbers)
|
161 |
+
|
162 |
+
# Remove duplicates
|
163 |
+
# potential_invoices = list(set(potential_invoices))
|
164 |
+
potential_invoices = parse_list_of_CSV_strings(potential_invoices) # TODO: remove duplicated lists
|
165 |
+
# return Prediction(candidate_invoice_numbers=candidates, column_header_names=col_names)
|
166 |
+
# return potential_invoices
|
167 |
+
# We need to return a Prediction for the Evaluate function later on
|
168 |
+
return Prediction(candidate_invoice_numbers=potential_invoices)
|
169 |
+
|
170 |
+
class FindTotalAmountColumns(dspy.Signature):
|
171 |
+
"""Given an input remittance letter, return a list of column header names that may contain the total payment amount."""
|
172 |
+
content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines
|
173 |
+
total_column_header_names = dspy.OutputField(desc="comma-separated list of column header names that may contain "\
|
174 |
+
"the remittance letter total payment amount")
|
175 |
+
|
176 |
+
class TotalAmountColumnHeaders(dspy.Module):
|
177 |
+
def __init__(self):
|
178 |
+
super().__init__()
|
179 |
+
self.potential_total_amount_column_headers = dspy.Predict(FindTotalAmountColumns)
|
180 |
+
|
181 |
+
def forward(self, file_content):
|
182 |
+
prediction = self.potential_total_amount_column_headers(content=file_content)
|
183 |
+
return prediction
|
184 |
+
|
185 |
+
class FindTotalAmount(dspy.Signature):
|
186 |
+
"""Given an input remittance letter and a column header name output the total payment amount """\
|
187 |
+
"""that belongs to that column."""
|
188 |
+
content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines
|
189 |
+
total_amount_column_header = dspy.InputField(desc="total amount header name")
|
190 |
+
total_amount = dspy.OutputField(desc="total payment amount")
|
191 |
+
|
192 |
+
class RemittanceLetterTotalAmount(dspy.Module):
|
193 |
+
def __init__(self):
|
194 |
+
super().__init__()
|
195 |
+
# self.find_invoice_list = InvoiceList()
|
196 |
+
self.find_total_amount_header = TotalAmountColumnHeaders()
|
197 |
+
self.find_total_amount = dspy.Predict(FindTotalAmount)
|
198 |
+
|
199 |
+
def forward(self, file_content):
|
200 |
+
# Predict invoice list - we could do this here, but let's just call the 2 modules from a function instead
|
201 |
+
# if we called the invoice list prediction here, we should return an object with both the potential total amounts
|
202 |
+
# and the potential invoice lists
|
203 |
+
# predict_invoice_list = self.find_invoice_list(file_content=file_content)
|
204 |
+
|
205 |
+
# Predict column headers (returns a Prediction with a CSV string in "column_header_names")
|
206 |
+
predict_column_headers = self.find_total_amount_header(file_content=file_content)
|
207 |
+
# Parse CSV into a list
|
208 |
+
potential_total_amount_column_headers = parse_CSV_string(predict_column_headers.total_column_header_names)
|
209 |
+
|
210 |
+
potential_total_amounts = []
|
211 |
+
|
212 |
+
for header in potential_total_amount_column_headers:
|
213 |
+
prediction = self.find_total_amount(content=file_content, total_amount_column_header=header)
|
214 |
+
potential_total_amounts.append(prediction.total_amount)
|
215 |
+
|
216 |
+
# Remove duplicates
|
217 |
+
potential_total_amounts = list(set(potential_total_amounts))
|
218 |
+
return Prediction(candidate_total_amounts=potential_total_amounts) # I could just return "prediction" also (references to candidate_total_amounts should change then)
|
219 |
+
|
220 |
+
|
221 |
+
# Pipeline
|
222 |
+
def poc_production_pipeline_without_verification(file_content):
|
223 |
+
# TODO: place this in a module - init allows to pass a compiled module and forward handles the data:
|
224 |
+
# so we can evaluate the pipeline (check if any tuple matches the verifier)
|
225 |
+
|
226 |
+
# Get invoice candidates
|
227 |
+
invoice_list_baseline = InvoiceList()
|
228 |
+
candidate_invoices = invoice_list_baseline(file_content=file_content).candidate_invoice_numbers
|
229 |
+
|
230 |
+
# Get total amount candidates
|
231 |
+
total_amount_baseline = RemittanceLetterTotalAmount()
|
232 |
+
|
233 |
+
# Format all decimals
|
234 |
+
candidate_total_amounts = list(map(format_text_decimal,
|
235 |
+
total_amount_baseline(file_content=file_content).candidate_total_amounts))
|
236 |
+
|
237 |
+
|
238 |
+
# For UI visualisation purposes, create a list of tuples where the second tuple value is empty
|
239 |
+
candidate_invoices_for_UI = []
|
240 |
+
candidate_total_amounts_for_UI = []
|
241 |
+
|
242 |
+
for candidate in candidate_invoices:
|
243 |
+
candidate_invoices_for_UI.append((candidate,))
|
244 |
+
|
245 |
+
for candidate in candidate_total_amounts:
|
246 |
+
candidate_total_amounts_for_UI.append((candidate,))
|
247 |
+
|
248 |
+
return candidate_invoices_for_UI, candidate_total_amounts_for_UI
|
249 |
+
|
250 |
+
def poc_production_pipeline_without_verification_from_PDF(file_path):
|
251 |
+
file_content = extract_text_using_pdfplumber(file_path)
|
252 |
+
# return str(poc_production_pipeline_without_verification(file_content))
|
253 |
+
return poc_production_pipeline_without_verification(file_content)
|
254 |
+
|
255 |
+
|
256 |
+
# Main app
|
257 |
+
fake_PDF_examples = get_PDF_examples(pdf_examples_dir)
|
258 |
+
|
259 |
+
remittance_letter_demo_without_verification_from_PDF = gr.Interface(
|
260 |
+
poc_production_pipeline_without_verification_from_PDF,
|
261 |
+
[PDF(label="Remittance letter", height=1000)],
|
262 |
+
[
|
263 |
+
gr.Dataframe(col_count=(1, 'fixed'), label="", headers=["Candidate invoices"], wrap=True),
|
264 |
+
gr.Dataframe(col_count=(1, 'fixed'), label="", headers=["Candidate total amounts"], wrap=True)
|
265 |
+
],
|
266 |
+
examples=fake_PDF_examples,
|
267 |
+
allow_flagging='never'
|
268 |
+
)
|
269 |
+
|
270 |
+
remittance_letter_demo_without_verification_from_PDF.launch(debug=True)
|