Alejandro-STC commited on
Commit
275359b
·
verified ·
1 Parent(s): ec49889

Initial Creation

Browse files
Files changed (1) hide show
  1. app.py +270 -0
app.py ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ #DSPY
4
+ import dspy
5
+ from dspy import Prediction
6
+ from dspy.evaluate import Evaluate
7
+ from dspy import Prediction
8
+ from dspy.teleprompt import BootstrapFewShot
9
+ from dspy.teleprompt import BootstrapFewShotWithRandomSearch
10
+
11
+ # Data handling
12
+ import pandas as pd
13
+ from google.colab import drive
14
+ from google.colab import userdata
15
+
16
+ # Calculations and formatting
17
+ import re
18
+ from decimal import Decimal
19
+
20
+ # UI
21
+ import gradio as gr
22
+ from gradio_pdf import PDF
23
+
24
+ # PDF handling
25
+ import pdfplumber
26
+
27
+
28
+ pdf_examples_dir = './pdfexamples/'
29
+
30
+ model = dspy.OpenAI(
31
+ model='gpt-3.5-turbo-0125',
32
+ api_key=userdata.get('OPENAI_PROJECT_KEY'),
33
+ max_tokens=2000,
34
+ temperature=0.01)
35
+
36
+ dspy.settings.configure(lm=model)
37
+
38
+
39
+ # Utils
40
+ def parse_CSV_string(csv_string):
41
+ # Parses a CSV string into a unique list
42
+ return list(set(map(str.lower, map(str.strip, csv_string.split(',')))))
43
+
44
+ def parse_list_of_CSV_strings(list_of_csv_strings):
45
+ # Parses a list of CSV strings with invoice numbers into a list of lists
46
+ parsed_csv_list = []
47
+ for csv_string in list_of_csv_strings:
48
+ parsed_csv_list.append(parse_CSV_string(csv_string))
49
+ return parsed_csv_list
50
+
51
+ def parse_invoice_number(s):
52
+ # Return the invoice number in Siemens' format if found, otherwise just return the string
53
+ rp = r'^\s*?([\S\d]+\d{6})'
54
+ m = re.search(rp, s)
55
+ return m.group(1) if m else s
56
+
57
+ def standardize_number(s):
58
+ # Find the last occurrence of a comma or period
59
+ last_separator_index = max(s.rfind(','), s.rfind('.'))
60
+ if last_separator_index != -1:
61
+ # Split the string into two parts
62
+ before_separator = s[:last_separator_index]
63
+ after_separator = s[last_separator_index+1:]
64
+
65
+ # Clean the first part of any commas, periods, or whitespace
66
+ before_separator_cleaned = re.sub(r'[.,\s]', '', before_separator)
67
+
68
+ # Ensure the decimal part starts with a period, even if it was a comma
69
+ standardized_s = before_separator_cleaned + '.' + after_separator
70
+ else:
71
+ # If there's no separator, just remove commas, periods, or whitespace
72
+ standardized_s = re.sub(r'[.,\s]', '', s)
73
+
74
+ return standardized_s
75
+
76
+ def remove_chars_after_last_digit(s):
77
+ # Remove any non-digit characters following the last digit in the string
78
+ return re.sub(r'(?<=\d)[^\d]*$', '', s)
79
+
80
+ def clean_text(s):
81
+ # This pattern looks for:
82
+ # - Optional non-digit or non-negative sign characters followed by whitespace (if any)
83
+ # - Followed by any characters until a digit is found in the word
84
+ # It then replaces this matched portion with the remaining part of the word from the first digit
85
+ # cleaned_s = re.sub(r'\S*?\s*?(\S*\d\S*)', r'\1', s)
86
+ cleaned_s = re.sub(r'[^\d-]*\s?(\S*\d\S*)', r'\1', s)
87
+ return cleaned_s
88
+
89
+ def format_text_decimal(text_decimal):
90
+ # Run functions to format a text decimal
91
+ return clean_text(remove_chars_after_last_digit(standardize_number(text_decimal.strip().lower())))
92
+
93
+
94
+ # PDF handling
95
+ def extract_text_using_pdfplumber(file_path):
96
+ # TODO: add check for text vs images padf
97
+ with pdfplumber.open(file_path) as pdf:
98
+ extracted_text = ''
99
+ for i, page in enumerate(pdf.pages):
100
+ # Remove duplicate characters from the page.
101
+ deduped_page = page.dedupe_chars(tolerance=1)
102
+ extracted_text += deduped_page.extract_text()
103
+ return extracted_text
104
+
105
+ def get_PDF_examples(directory):
106
+ example_pdf_files = []
107
+ for filename in os.listdir(directory):
108
+ if filename.endswith('.pdf'):
109
+ example_pdf_files.append(os.path.join(directory, filename))
110
+ return example_pdf_files
111
+
112
+
113
+ # Signatures and Models
114
+ class FindInvoiceNumberColumns(dspy.Signature):
115
+ """Given an input remittance letter, return a list of column header names that may contain invoice numbers."""
116
+ content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines
117
+ column_header_names = dspy.OutputField(desc="comma-separated list of column header names that may contain "\
118
+ "invoice numbers")
119
+
120
+ class InvoiceColumnHeaders(dspy.Module):
121
+ def __init__(self):
122
+ super().__init__()
123
+
124
+ # self.potential_invoice_column_headers = dspy.ChainOfThought(FindInvoiceNumberColumns)
125
+ self.potential_invoice_column_headers = dspy.Predict(FindInvoiceNumberColumns) # Ervin suggests Predict
126
+
127
+ def forward(self, file_content):
128
+ prediction = self.potential_invoice_column_headers(content=file_content)
129
+ # NOTE: Instead of a prediction we could return a simple list (for consistency with my other Modules)
130
+ # or even a parsed list (not CSV)
131
+ return prediction
132
+
133
+ # This creates a new Prediction object adding the File Content
134
+ # return Prediction(content=file_content, column_header_names=prediction.column_header_names, rationale=prediction.rationale)
135
+ # Creating a new Prediction object with extra data can be useful if we need more data for the verification
136
+
137
+ class FindInvoiceList(dspy.Signature):
138
+ """Given an input remittance letter and a column header name output a comma-separated list of all invoice numbers """\
139
+ """that belong to that column."""
140
+ content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines
141
+ invoice_column_header = dspy.InputField(desc="invoice column header name")
142
+ candidate_invoice_numbers = dspy.OutputField(desc="comma-separated list of invoice numbers")
143
+
144
+ class InvoiceList(dspy.Module):
145
+ def __init__(self):
146
+ super().__init__()
147
+ self.find_invoice_headers = InvoiceColumnHeaders() # here we could load a compiled program also
148
+ self.find_invoice_numbers = dspy.Predict(FindInvoiceList)
149
+
150
+ def forward(self, file_content):
151
+ # Predict column headers (returns a Prediction with a CSV string in "column_header_names")
152
+ predict_column_headers = self.find_invoice_headers(file_content=file_content)
153
+ # Parse CSV into a list
154
+ potential_invoice_column_headers = parse_CSV_string(predict_column_headers.column_header_names)
155
+
156
+ potential_invoices = []
157
+
158
+ for header in potential_invoice_column_headers:
159
+ prediction = self.find_invoice_numbers(content=file_content, invoice_column_header=header)
160
+ potential_invoices.append(prediction.candidate_invoice_numbers)
161
+
162
+ # Remove duplicates
163
+ # potential_invoices = list(set(potential_invoices))
164
+ potential_invoices = parse_list_of_CSV_strings(potential_invoices) # TODO: remove duplicated lists
165
+ # return Prediction(candidate_invoice_numbers=candidates, column_header_names=col_names)
166
+ # return potential_invoices
167
+ # We need to return a Prediction for the Evaluate function later on
168
+ return Prediction(candidate_invoice_numbers=potential_invoices)
169
+
170
+ class FindTotalAmountColumns(dspy.Signature):
171
+ """Given an input remittance letter, return a list of column header names that may contain the total payment amount."""
172
+ content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines
173
+ total_column_header_names = dspy.OutputField(desc="comma-separated list of column header names that may contain "\
174
+ "the remittance letter total payment amount")
175
+
176
+ class TotalAmountColumnHeaders(dspy.Module):
177
+ def __init__(self):
178
+ super().__init__()
179
+ self.potential_total_amount_column_headers = dspy.Predict(FindTotalAmountColumns)
180
+
181
+ def forward(self, file_content):
182
+ prediction = self.potential_total_amount_column_headers(content=file_content)
183
+ return prediction
184
+
185
+ class FindTotalAmount(dspy.Signature):
186
+ """Given an input remittance letter and a column header name output the total payment amount """\
187
+ """that belongs to that column."""
188
+ content = dspy.InputField(desc="remittance letter", format=lambda s:s) # s:s so it doesn't skip the new lines
189
+ total_amount_column_header = dspy.InputField(desc="total amount header name")
190
+ total_amount = dspy.OutputField(desc="total payment amount")
191
+
192
+ class RemittanceLetterTotalAmount(dspy.Module):
193
+ def __init__(self):
194
+ super().__init__()
195
+ # self.find_invoice_list = InvoiceList()
196
+ self.find_total_amount_header = TotalAmountColumnHeaders()
197
+ self.find_total_amount = dspy.Predict(FindTotalAmount)
198
+
199
+ def forward(self, file_content):
200
+ # Predict invoice list - we could do this here, but let's just call the 2 modules from a function instead
201
+ # if we called the invoice list prediction here, we should return an object with both the potential total amounts
202
+ # and the potential invoice lists
203
+ # predict_invoice_list = self.find_invoice_list(file_content=file_content)
204
+
205
+ # Predict column headers (returns a Prediction with a CSV string in "column_header_names")
206
+ predict_column_headers = self.find_total_amount_header(file_content=file_content)
207
+ # Parse CSV into a list
208
+ potential_total_amount_column_headers = parse_CSV_string(predict_column_headers.total_column_header_names)
209
+
210
+ potential_total_amounts = []
211
+
212
+ for header in potential_total_amount_column_headers:
213
+ prediction = self.find_total_amount(content=file_content, total_amount_column_header=header)
214
+ potential_total_amounts.append(prediction.total_amount)
215
+
216
+ # Remove duplicates
217
+ potential_total_amounts = list(set(potential_total_amounts))
218
+ return Prediction(candidate_total_amounts=potential_total_amounts) # I could just return "prediction" also (references to candidate_total_amounts should change then)
219
+
220
+
221
+ # Pipeline
222
+ def poc_production_pipeline_without_verification(file_content):
223
+ # TODO: place this in a module - init allows to pass a compiled module and forward handles the data:
224
+ # so we can evaluate the pipeline (check if any tuple matches the verifier)
225
+
226
+ # Get invoice candidates
227
+ invoice_list_baseline = InvoiceList()
228
+ candidate_invoices = invoice_list_baseline(file_content=file_content).candidate_invoice_numbers
229
+
230
+ # Get total amount candidates
231
+ total_amount_baseline = RemittanceLetterTotalAmount()
232
+
233
+ # Format all decimals
234
+ candidate_total_amounts = list(map(format_text_decimal,
235
+ total_amount_baseline(file_content=file_content).candidate_total_amounts))
236
+
237
+
238
+ # For UI visualisation purposes, create a list of tuples where the second tuple value is empty
239
+ candidate_invoices_for_UI = []
240
+ candidate_total_amounts_for_UI = []
241
+
242
+ for candidate in candidate_invoices:
243
+ candidate_invoices_for_UI.append((candidate,))
244
+
245
+ for candidate in candidate_total_amounts:
246
+ candidate_total_amounts_for_UI.append((candidate,))
247
+
248
+ return candidate_invoices_for_UI, candidate_total_amounts_for_UI
249
+
250
+ def poc_production_pipeline_without_verification_from_PDF(file_path):
251
+ file_content = extract_text_using_pdfplumber(file_path)
252
+ # return str(poc_production_pipeline_without_verification(file_content))
253
+ return poc_production_pipeline_without_verification(file_content)
254
+
255
+
256
+ # Main app
257
+ fake_PDF_examples = get_PDF_examples(pdf_examples_dir)
258
+
259
+ remittance_letter_demo_without_verification_from_PDF = gr.Interface(
260
+ poc_production_pipeline_without_verification_from_PDF,
261
+ [PDF(label="Remittance letter", height=1000)],
262
+ [
263
+ gr.Dataframe(col_count=(1, 'fixed'), label="", headers=["Candidate invoices"], wrap=True),
264
+ gr.Dataframe(col_count=(1, 'fixed'), label="", headers=["Candidate total amounts"], wrap=True)
265
+ ],
266
+ examples=fake_PDF_examples,
267
+ allow_flagging='never'
268
+ )
269
+
270
+ remittance_letter_demo_without_verification_from_PDF.launch(debug=True)