Spaces:
Sleeping
Sleeping
# YOLOv5 π by Ultralytics, GPL-3.0 license | |
""" | |
Logging utils | |
""" | |
import os | |
import warnings | |
import pkg_resources as pkg | |
import torch | |
from torch.utils.tensorboard import SummaryWriter | |
from utils.general import colorstr, cv2, emojis | |
from utils.loggers.wandb.wandb_utils import WandbLogger | |
from utils.plots import plot_images, plot_results | |
from utils.torch_utils import de_parallel | |
LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases | |
RANK = int(os.getenv('RANK', -1)) | |
try: | |
import wandb | |
assert hasattr(wandb, '__version__') # verify package import not local dir | |
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}: | |
try: | |
wandb_login_success = wandb.login(timeout=30) | |
except wandb.errors.UsageError: # known non-TTY terminal issue | |
wandb_login_success = False | |
if not wandb_login_success: | |
wandb = None | |
except (ImportError, AssertionError): | |
wandb = None | |
class Loggers(): | |
# YOLOv5 Loggers class | |
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS): | |
self.save_dir = save_dir | |
self.weights = weights | |
self.opt = opt | |
self.hyp = hyp | |
self.logger = logger # for printing results to console | |
self.include = include | |
self.keys = [ | |
'train/box_loss', | |
'train/obj_loss', | |
'train/cls_loss', # train loss | |
'metrics/precision', | |
'metrics/recall', | |
'metrics/mAP_0.5', | |
'metrics/mAP_0.5:0.95', # metrics | |
'val/box_loss', | |
'val/obj_loss', | |
'val/cls_loss', # val loss | |
'x/lr0', | |
'x/lr1', | |
'x/lr2'] # params | |
self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95'] | |
for k in LOGGERS: | |
setattr(self, k, None) # init empty logger dictionary | |
self.csv = True # always log to csv | |
# Message | |
if not wandb: | |
prefix = colorstr('Weights & Biases: ') | |
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 π runs (RECOMMENDED)" | |
self.logger.info(emojis(s)) | |
# TensorBoard | |
s = self.save_dir | |
if 'tb' in self.include and not self.opt.evolve: | |
prefix = colorstr('TensorBoard: ') | |
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/") | |
self.tb = SummaryWriter(str(s)) | |
# W&B | |
if wandb and 'wandb' in self.include: | |
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://') | |
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None | |
self.opt.hyp = self.hyp # add hyperparameters | |
self.wandb = WandbLogger(self.opt, run_id) | |
# temp warn. because nested artifacts not supported after 0.12.10 | |
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'): | |
self.logger.warning( | |
"YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected." | |
) | |
else: | |
self.wandb = None | |
def on_train_start(self): | |
# Callback runs on train start | |
pass | |
def on_pretrain_routine_end(self): | |
# Callback runs on pre-train routine end | |
paths = self.save_dir.glob('*labels*.jpg') # training labels | |
if self.wandb: | |
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]}) | |
def on_train_batch_end(self, ni, model, imgs, targets, paths, plots): | |
# Callback runs on train batch end | |
if plots: | |
if ni == 0: | |
if not self.opt.sync_bn: # --sync known issue https://github.com/ultralytics/yolov5/issues/3754 | |
with warnings.catch_warnings(): | |
warnings.simplefilter('ignore') # suppress jit trace warning | |
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) | |
if ni < 3: | |
f = self.save_dir / f'train_batch{ni}.jpg' # filename | |
plot_images(imgs, targets, paths, f) | |
if self.wandb and ni == 10: | |
files = sorted(self.save_dir.glob('train*.jpg')) | |
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) | |
def on_train_epoch_end(self, epoch): | |
# Callback runs on train epoch end | |
if self.wandb: | |
self.wandb.current_epoch = epoch + 1 | |
def on_val_image_end(self, pred, predn, path, names, im): | |
# Callback runs on val image end | |
if self.wandb: | |
self.wandb.val_one_image(pred, predn, path, names, im) | |
def on_val_end(self): | |
# Callback runs on val end | |
if self.wandb: | |
files = sorted(self.save_dir.glob('val*.jpg')) | |
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]}) | |
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): | |
# Callback runs at the end of each fit (train+val) epoch | |
x = dict(zip(self.keys, vals)) | |
if self.csv: | |
file = self.save_dir / 'results.csv' | |
n = len(x) + 1 # number of cols | |
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header | |
with open(file, 'a') as f: | |
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n') | |
if self.tb: | |
for k, v in x.items(): | |
self.tb.add_scalar(k, v, epoch) | |
if self.wandb: | |
if best_fitness == fi: | |
best_results = [epoch] + vals[3:7] | |
for i, name in enumerate(self.best_keys): | |
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary | |
self.wandb.log(x) | |
self.wandb.end_epoch(best_result=best_fitness == fi) | |
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): | |
# Callback runs on model save event | |
if self.wandb: | |
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1: | |
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) | |
def on_train_end(self, last, best, plots, epoch, results): | |
# Callback runs on training end | |
if plots: | |
plot_results(file=self.save_dir / 'results.csv') # save results.png | |
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] | |
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter | |
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}") | |
if self.tb: | |
for f in files: | |
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') | |
if self.wandb: | |
self.wandb.log(dict(zip(self.keys[3:10], results))) | |
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]}) | |
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model | |
if not self.opt.evolve: | |
wandb.log_artifact(str(best if best.exists() else last), | |
type='model', | |
name=f'run_{self.wandb.wandb_run.id}_model', | |
aliases=['latest', 'best', 'stripped']) | |
self.wandb.finish_run() | |
def on_params_update(self, params): | |
# Update hyperparams or configs of the experiment | |
# params: A dict containing {param: value} pairs | |
if self.wandb: | |
self.wandb.wandb_run.config.update(params, allow_val_change=True) | |