SamDaLamb commited on
Commit
091113e
·
verified ·
1 Parent(s): bd5a194

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -21
app.py CHANGED
@@ -1,5 +1,77 @@
1
  import gradio as gr
2
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  def greet(name):
5
  return "Hello " + name + "!!"
@@ -15,27 +87,6 @@ examples = [ # need to manually delete cache everytime new examples are added
15
  ["clip2_-1450-_jpg.jpg"],
16
  ["clip2_-539-_jpg.jpg"]]
17
 
18
- def speclab(img):
19
-
20
- # initialize the model
21
- model = torch.hub.load('SamDaaLamb/ValorantTracker', 'srdetect', force_reload=True) # for some reasons loads the model in src rather than demo
22
- model.eval()
23
-
24
- # preprocess image to be used as input
25
- transforms = A.Compose([
26
- A.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
27
- ToTensorV2()
28
- ])
29
- input = transforms(image=img)['image']
30
- input = input.unsqueeze(0)
31
-
32
- # model prediction
33
- output = model(input)
34
-
35
- # overlay output onto original image
36
- img[output==255] = [0, 255, 0]
37
-
38
- return img
39
 
40
  # define app features and run
41
  title = "SpecLab Demo"
 
1
  import gradio as gr
2
  import torch
3
+ from io import BytesIO
4
+
5
+ import cv2
6
+ import gradio as gr
7
+ import numpy as np
8
+ import requests
9
+ from PIL import Image
10
+
11
+
12
+ from super_gradients.common.object_names import Models
13
+ from super_gradients.training import models
14
+ from super_gradients.training.utils.visualization.detection import draw_bbox
15
+
16
+
17
+ # Initialize your pose estimation model
18
+ yolo_nas_pose = models.get("best.pt",
19
+ num_classes=1,
20
+ checkpoint_path="./best.pt")
21
+
22
+ def process_and_predict(url=None,
23
+ image=None,
24
+ confidence=0.5,
25
+ iou=0.5):
26
+ # If a URL is provided, use it directly for prediction
27
+ if url is not None and url.strip() != "":
28
+ response = requests.get(url)
29
+ image = Image.open(BytesIO(response.content))
30
+ image = np.array(image)
31
+ result = yolo_nas_pose.predict(image, conf=confidence,iou=iou)
32
+ # If a file is uploaded, read it, convert it to a numpy array and use it for prediction
33
+ elif image is not None:
34
+ result = yolo_nas_pose.predict(image, conf=confidence,iou=iou)
35
+ else:
36
+ return None # If no input is provided, return None
37
+
38
+ # Extract prediction data
39
+ image_prediction = result._images_prediction_lst[0]
40
+
41
+ pose_data = image_prediction.prediction
42
+
43
+ # Visualize the prediction
44
+ output_image = PoseVisualization.draw_poses(
45
+ image=image_prediction.image,
46
+ poses=pose_data.poses,
47
+ boxes=pose_data.bboxes_xyxy,
48
+ scores=pose_data.scores,
49
+ is_crowd=None,
50
+ edge_links=pose_data.edge_links,
51
+ edge_colors=pose_data.edge_colors,
52
+ keypoint_colors=pose_data.keypoint_colors,
53
+ joint_thickness=2,
54
+ box_thickness=2,
55
+ keypoint_radius=5
56
+ )
57
+
58
+ blank_image = np.zeros_like(image_prediction.image)
59
+
60
+ skeleton_image = PoseVisualization.draw_poses(
61
+ image=blank_image,
62
+ poses=pose_data.poses,
63
+ boxes=pose_data.bboxes_xyxy,
64
+ scores=pose_data.scores,
65
+ is_crowd=None,
66
+ edge_links=pose_data.edge_links,
67
+ edge_colors=pose_data.edge_colors,
68
+ keypoint_colors=pose_data.keypoint_colors,
69
+ joint_thickness=2,
70
+ box_thickness=2,
71
+ keypoint_radius=5
72
+ )
73
+
74
+ return output_image, skeleton_image
75
 
76
  def greet(name):
77
  return "Hello " + name + "!!"
 
87
  ["clip2_-1450-_jpg.jpg"],
88
  ["clip2_-539-_jpg.jpg"]]
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
  # define app features and run
92
  title = "SpecLab Demo"