Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -35,8 +35,7 @@ model.eval()
|
|
35 |
# transforms.Resize((512,640)),
|
36 |
# transforms.ToTensor()
|
37 |
# ])
|
38 |
-
transform = transforms.Compose([
|
39 |
-
transforms.ToPILImage(), # Ensure input is a PIL image
|
40 |
transforms.Resize((512, 640)),
|
41 |
transforms.ToTensor()
|
42 |
])
|
@@ -49,20 +48,24 @@ OBJECT_NAMES = ['enemies']
|
|
49 |
|
50 |
|
51 |
def detect_objects_in_image(image):
|
|
|
52 |
print(type(image))
|
53 |
print(np.ndarray.view(image))
|
54 |
-
|
|
|
55 |
print(image.size)
|
56 |
if isinstance(image, np.ndarray):
|
57 |
print("Converting NumPy array to PIL Image")
|
58 |
image = Image.fromarray(image)
|
59 |
print(image.size)
|
|
|
60 |
orig_w, orig_h = image.size
|
61 |
print("passed1")
|
62 |
|
63 |
-
|
64 |
with torch.no_grad():
|
65 |
pred = model(img_tensor)[0]
|
|
|
66 |
print("Passed2")
|
67 |
|
68 |
if isinstance(pred[0], torch.Tensor):
|
|
|
35 |
# transforms.Resize((512,640)),
|
36 |
# transforms.ToTensor()
|
37 |
# ])
|
38 |
+
transform = transforms.Compose([ # Ensure input is a PIL image
|
|
|
39 |
transforms.Resize((512, 640)),
|
40 |
transforms.ToTensor()
|
41 |
])
|
|
|
48 |
|
49 |
|
50 |
def detect_objects_in_image(image):
|
51 |
+
|
52 |
print(type(image))
|
53 |
print(np.ndarray.view(image))
|
54 |
+
|
55 |
+
|
56 |
print(image.size)
|
57 |
if isinstance(image, np.ndarray):
|
58 |
print("Converting NumPy array to PIL Image")
|
59 |
image = Image.fromarray(image)
|
60 |
print(image.size)
|
61 |
+
img_tensor = transform(image).unsqueeze(0)
|
62 |
orig_w, orig_h = image.size
|
63 |
print("passed1")
|
64 |
|
65 |
+
print(torch.no_grad())
|
66 |
with torch.no_grad():
|
67 |
pred = model(img_tensor)[0]
|
68 |
+
|
69 |
print("Passed2")
|
70 |
|
71 |
if isinstance(pred[0], torch.Tensor):
|