SamDaLamb commited on
Commit
7761b9a
·
verified ·
1 Parent(s): c8227b7

Update models/experimental.py

Browse files
Files changed (1) hide show
  1. models/experimental.py +104 -104
models/experimental.py CHANGED
@@ -1,104 +1,104 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Experimental modules
4
- """
5
- import math
6
-
7
- import numpy as np
8
- import torch
9
- import torch.nn as nn
10
-
11
- from models.common import Conv
12
- from utils.downloads import attempt_download
13
-
14
-
15
- class Sum(nn.Module):
16
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
17
- def __init__(self, n, weight=False): # n: number of inputs
18
- super().__init__()
19
- self.weight = weight # apply weights boolean
20
- self.iter = range(n - 1) # iter object
21
- if weight:
22
- self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
23
-
24
- def forward(self, x):
25
- y = x[0] # no weight
26
- if self.weight:
27
- w = torch.sigmoid(self.w) * 2
28
- for i in self.iter:
29
- y = y + x[i + 1] * w[i]
30
- else:
31
- for i in self.iter:
32
- y = y + x[i + 1]
33
- return y
34
-
35
-
36
- class MixConv2d(nn.Module):
37
- # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
38
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
39
- super().__init__()
40
- n = len(k) # number of convolutions
41
- if equal_ch: # equal c_ per group
42
- i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
43
- c_ = [(i == g).sum() for g in range(n)] # intermediate channels
44
- else: # equal weight.numel() per group
45
- b = [c2] + [0] * n
46
- a = np.eye(n + 1, n, k=-1)
47
- a -= np.roll(a, 1, axis=1)
48
- a *= np.array(k) ** 2
49
- a[0] = 1
50
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
51
-
52
- self.m = nn.ModuleList([
53
- nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
54
- self.bn = nn.BatchNorm2d(c2)
55
- self.act = nn.SiLU()
56
-
57
- def forward(self, x):
58
- return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
59
-
60
-
61
- class Ensemble(nn.ModuleList):
62
- # Ensemble of models
63
- def __init__(self):
64
- super().__init__()
65
-
66
- def forward(self, x, augment=False, profile=False, visualize=False):
67
- y = [module(x, augment, profile, visualize)[0] for module in self]
68
- # y = torch.stack(y).max(0)[0] # max ensemble
69
- # y = torch.stack(y).mean(0) # mean ensemble
70
- y = torch.cat(y, 1) # nms ensemble
71
- return y, None # inference, train output
72
-
73
-
74
- def attempt_load(weights, device=None, inplace=True, fuse=True):
75
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
76
- from models.yolo import Detect, Model
77
-
78
- model = Ensemble()
79
- for w in weights if isinstance(weights, list) else [weights]:
80
- ckpt = torch.load(attempt_download(w), map_location='cpu') # load
81
- ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
82
- model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
83
-
84
- # Compatibility updates
85
- for m in model.modules():
86
- t = type(m)
87
- if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
88
- m.inplace = inplace # torch 1.7.0 compatibility
89
- if t is Detect and not isinstance(m.anchor_grid, list):
90
- delattr(m, 'anchor_grid')
91
- setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
92
- elif t is Conv:
93
- m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
94
- elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
95
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
96
-
97
- if len(model) == 1:
98
- return model[-1] # return model
99
- print(f'Ensemble created with {weights}\n')
100
- for k in 'names', 'nc', 'yaml':
101
- setattr(model, k, getattr(model[0], k))
102
- model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
103
- assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
104
- return model # return ensemble
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Experimental modules
4
+ """
5
+ import math
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ from models.common import Conv
12
+ from utils.downloads import attempt_download
13
+
14
+
15
+ class Sum(nn.Module):
16
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
17
+ def __init__(self, n, weight=False): # n: number of inputs
18
+ super().__init__()
19
+ self.weight = weight # apply weights boolean
20
+ self.iter = range(n - 1) # iter object
21
+ if weight:
22
+ self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
23
+
24
+ def forward(self, x):
25
+ y = x[0] # no weight
26
+ if self.weight:
27
+ w = torch.sigmoid(self.w) * 2
28
+ for i in self.iter:
29
+ y = y + x[i + 1] * w[i]
30
+ else:
31
+ for i in self.iter:
32
+ y = y + x[i + 1]
33
+ return y
34
+
35
+
36
+ class MixConv2d(nn.Module):
37
+ # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
38
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
39
+ super().__init__()
40
+ n = len(k) # number of convolutions
41
+ if equal_ch: # equal c_ per group
42
+ i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
43
+ c_ = [(i == g).sum() for g in range(n)] # intermediate channels
44
+ else: # equal weight.numel() per group
45
+ b = [c2] + [0] * n
46
+ a = np.eye(n + 1, n, k=-1)
47
+ a -= np.roll(a, 1, axis=1)
48
+ a *= np.array(k) ** 2
49
+ a[0] = 1
50
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
51
+
52
+ self.m = nn.ModuleList([
53
+ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
54
+ self.bn = nn.BatchNorm2d(c2)
55
+ self.act = nn.SiLU()
56
+
57
+ def forward(self, x):
58
+ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
59
+
60
+
61
+ class Ensemble(nn.ModuleList):
62
+ # Ensemble of models
63
+ def __init__(self):
64
+ super().__init__()
65
+
66
+ def forward(self, x, augment=False, profile=False, visualize=False):
67
+ y = [module(x, augment, profile, visualize)[0] for module in self]
68
+ # y = torch.stack(y).max(0)[0] # max ensemble
69
+ # y = torch.stack(y).mean(0) # mean ensemble
70
+ y = torch.cat(y, 1) # nms ensemble
71
+ return y, None # inference, train output
72
+
73
+
74
+ def attempt_load(weights, device=None, inplace=True, fuse=True):
75
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
76
+ from models.yolo import Detect, Model
77
+
78
+ model = Ensemble()
79
+ for w in weights if isinstance(weights, list) else [weights]:
80
+ ckpt = torch.load(attempt_download(w), map_location='cpu', weights_only = False) # load
81
+ ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
82
+ model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
83
+
84
+ # Compatibility updates
85
+ for m in model.modules():
86
+ t = type(m)
87
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
88
+ m.inplace = inplace # torch 1.7.0 compatibility
89
+ if t is Detect and not isinstance(m.anchor_grid, list):
90
+ delattr(m, 'anchor_grid')
91
+ setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
92
+ elif t is Conv:
93
+ m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
94
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
95
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
96
+
97
+ if len(model) == 1:
98
+ return model[-1] # return model
99
+ print(f'Ensemble created with {weights}\n')
100
+ for k in 'names', 'nc', 'yaml':
101
+ setattr(model, k, getattr(model[0], k))
102
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
103
+ assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
104
+ return model # return ensemble