SamDaLamb commited on
Commit
a564826
·
verified ·
1 Parent(s): 1b4b0ba

Upload 39 files

Browse files
models/__init__.py ADDED
File without changes
models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (144 Bytes). View file
 
models/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (160 Bytes). View file
 
models/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (148 Bytes). View file
 
models/__pycache__/common.cpython-310.pyc ADDED
Binary file (31.9 kB). View file
 
models/__pycache__/common.cpython-311.pyc ADDED
Binary file (67.8 kB). View file
 
models/__pycache__/common.cpython-312.pyc ADDED
Binary file (57 kB). View file
 
models/__pycache__/experimental.cpython-310.pyc ADDED
Binary file (4.81 kB). View file
 
models/__pycache__/experimental.cpython-311.pyc ADDED
Binary file (9.42 kB). View file
 
models/__pycache__/yolo.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
models/__pycache__/yolo.cpython-311.pyc ADDED
Binary file (28.4 kB). View file
 
models/common.py ADDED
@@ -0,0 +1,748 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Common modules
4
+ """
5
+
6
+ import json
7
+ import math
8
+ import platform
9
+ import warnings
10
+ from collections import OrderedDict, namedtuple
11
+ from copy import copy
12
+ from pathlib import Path
13
+
14
+ import cv2
15
+ import numpy as np
16
+ import pandas as pd
17
+ import requests
18
+ import torch
19
+ import torch.nn as nn
20
+ import yaml
21
+ from PIL import Image
22
+ from torch.cuda import amp
23
+
24
+ from utils.dataloaders import exif_transpose, letterbox
25
+ from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
26
+ make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
27
+ from utils.plots import Annotator, colors, save_one_box
28
+ from utils.torch_utils import copy_attr, time_sync
29
+
30
+
31
+ def autopad(k, p=None): # kernel, padding
32
+ # Pad to 'same'
33
+ if p is None:
34
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
35
+ return p
36
+
37
+
38
+ class Conv(nn.Module):
39
+ # Standard convolution
40
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
41
+ super().__init__()
42
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
43
+ self.bn = nn.BatchNorm2d(c2)
44
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
45
+
46
+ def forward(self, x):
47
+ return self.act(self.bn(self.conv(x)))
48
+
49
+ def forward_fuse(self, x):
50
+ return self.act(self.conv(x))
51
+
52
+
53
+ class DWConv(Conv):
54
+ # Depth-wise convolution class
55
+ def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
56
+ super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
57
+
58
+
59
+ class DWConvTranspose2d(nn.ConvTranspose2d):
60
+ # Depth-wise transpose convolution class
61
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
62
+ super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
63
+
64
+
65
+ class TransformerLayer(nn.Module):
66
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
67
+ def __init__(self, c, num_heads):
68
+ super().__init__()
69
+ self.q = nn.Linear(c, c, bias=False)
70
+ self.k = nn.Linear(c, c, bias=False)
71
+ self.v = nn.Linear(c, c, bias=False)
72
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
73
+ self.fc1 = nn.Linear(c, c, bias=False)
74
+ self.fc2 = nn.Linear(c, c, bias=False)
75
+
76
+ def forward(self, x):
77
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
78
+ x = self.fc2(self.fc1(x)) + x
79
+ return x
80
+
81
+
82
+ class TransformerBlock(nn.Module):
83
+ # Vision Transformer https://arxiv.org/abs/2010.11929
84
+ def __init__(self, c1, c2, num_heads, num_layers):
85
+ super().__init__()
86
+ self.conv = None
87
+ if c1 != c2:
88
+ self.conv = Conv(c1, c2)
89
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
90
+ self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
91
+ self.c2 = c2
92
+
93
+ def forward(self, x):
94
+ if self.conv is not None:
95
+ x = self.conv(x)
96
+ b, _, w, h = x.shape
97
+ p = x.flatten(2).permute(2, 0, 1)
98
+ return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
99
+
100
+
101
+ class Bottleneck(nn.Module):
102
+ # Standard bottleneck
103
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
104
+ super().__init__()
105
+ c_ = int(c2 * e) # hidden channels
106
+ self.cv1 = Conv(c1, c_, 1, 1)
107
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
108
+ self.add = shortcut and c1 == c2
109
+
110
+ def forward(self, x):
111
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
112
+
113
+
114
+ class BottleneckCSP(nn.Module):
115
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
116
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
117
+ super().__init__()
118
+ c_ = int(c2 * e) # hidden channels
119
+ self.cv1 = Conv(c1, c_, 1, 1)
120
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
121
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
122
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
123
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
124
+ self.act = nn.SiLU()
125
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
126
+
127
+ def forward(self, x):
128
+ y1 = self.cv3(self.m(self.cv1(x)))
129
+ y2 = self.cv2(x)
130
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
131
+
132
+
133
+ class CrossConv(nn.Module):
134
+ # Cross Convolution Downsample
135
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
136
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
137
+ super().__init__()
138
+ c_ = int(c2 * e) # hidden channels
139
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
140
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
141
+ self.add = shortcut and c1 == c2
142
+
143
+ def forward(self, x):
144
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
145
+
146
+
147
+ class C3(nn.Module):
148
+ # CSP Bottleneck with 3 convolutions
149
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
150
+ super().__init__()
151
+ c_ = int(c2 * e) # hidden channels
152
+ self.cv1 = Conv(c1, c_, 1, 1)
153
+ self.cv2 = Conv(c1, c_, 1, 1)
154
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
155
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
156
+
157
+ def forward(self, x):
158
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
159
+
160
+
161
+ class C3x(C3):
162
+ # C3 module with cross-convolutions
163
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
164
+ super().__init__(c1, c2, n, shortcut, g, e)
165
+ c_ = int(c2 * e)
166
+ self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
167
+
168
+
169
+ class C3TR(C3):
170
+ # C3 module with TransformerBlock()
171
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
172
+ super().__init__(c1, c2, n, shortcut, g, e)
173
+ c_ = int(c2 * e)
174
+ self.m = TransformerBlock(c_, c_, 4, n)
175
+
176
+
177
+ class C3SPP(C3):
178
+ # C3 module with SPP()
179
+ def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
180
+ super().__init__(c1, c2, n, shortcut, g, e)
181
+ c_ = int(c2 * e)
182
+ self.m = SPP(c_, c_, k)
183
+
184
+
185
+ class C3Ghost(C3):
186
+ # C3 module with GhostBottleneck()
187
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
188
+ super().__init__(c1, c2, n, shortcut, g, e)
189
+ c_ = int(c2 * e) # hidden channels
190
+ self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
191
+
192
+
193
+ class SPP(nn.Module):
194
+ # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
195
+ def __init__(self, c1, c2, k=(5, 9, 13)):
196
+ super().__init__()
197
+ c_ = c1 // 2 # hidden channels
198
+ self.cv1 = Conv(c1, c_, 1, 1)
199
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
200
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
201
+
202
+ def forward(self, x):
203
+ x = self.cv1(x)
204
+ with warnings.catch_warnings():
205
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
206
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
207
+
208
+
209
+ class SPPF(nn.Module):
210
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
211
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
212
+ super().__init__()
213
+ c_ = c1 // 2 # hidden channels
214
+ self.cv1 = Conv(c1, c_, 1, 1)
215
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
216
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
217
+
218
+ def forward(self, x):
219
+ x = self.cv1(x)
220
+ with warnings.catch_warnings():
221
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
222
+ y1 = self.m(x)
223
+ y2 = self.m(y1)
224
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
225
+
226
+
227
+ class Focus(nn.Module):
228
+ # Focus wh information into c-space
229
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
230
+ super().__init__()
231
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
232
+ # self.contract = Contract(gain=2)
233
+
234
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
235
+ return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
236
+ # return self.conv(self.contract(x))
237
+
238
+
239
+ class GhostConv(nn.Module):
240
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
241
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
242
+ super().__init__()
243
+ c_ = c2 // 2 # hidden channels
244
+ self.cv1 = Conv(c1, c_, k, s, None, g, act)
245
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
246
+
247
+ def forward(self, x):
248
+ y = self.cv1(x)
249
+ return torch.cat((y, self.cv2(y)), 1)
250
+
251
+
252
+ class GhostBottleneck(nn.Module):
253
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
254
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
255
+ super().__init__()
256
+ c_ = c2 // 2
257
+ self.conv = nn.Sequential(
258
+ GhostConv(c1, c_, 1, 1), # pw
259
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
260
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
261
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
262
+ act=False)) if s == 2 else nn.Identity()
263
+
264
+ def forward(self, x):
265
+ return self.conv(x) + self.shortcut(x)
266
+
267
+
268
+ class Contract(nn.Module):
269
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
270
+ def __init__(self, gain=2):
271
+ super().__init__()
272
+ self.gain = gain
273
+
274
+ def forward(self, x):
275
+ b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
276
+ s = self.gain
277
+ x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
278
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
279
+ return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
280
+
281
+
282
+ class Expand(nn.Module):
283
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
284
+ def __init__(self, gain=2):
285
+ super().__init__()
286
+ self.gain = gain
287
+
288
+ def forward(self, x):
289
+ b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
290
+ s = self.gain
291
+ x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
292
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
293
+ return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
294
+
295
+
296
+ class Concat(nn.Module):
297
+ # Concatenate a list of tensors along dimension
298
+ def __init__(self, dimension=1):
299
+ super().__init__()
300
+ self.d = dimension
301
+
302
+ def forward(self, x):
303
+ return torch.cat(x, self.d)
304
+
305
+
306
+ class DetectMultiBackend(nn.Module):
307
+ # YOLOv5 MultiBackend class for python inference on various backends
308
+ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
309
+ # Usage:
310
+ # PyTorch: weights = *.pt
311
+ # TorchScript: *.torchscript
312
+ # ONNX Runtime: *.onnx
313
+ # ONNX OpenCV DNN: *.onnx with --dnn
314
+ # OpenVINO: *.xml
315
+ # CoreML: *.mlmodel
316
+ # TensorRT: *.engine
317
+ # TensorFlow SavedModel: *_saved_model
318
+ # TensorFlow GraphDef: *.pb
319
+ # TensorFlow Lite: *.tflite
320
+ # TensorFlow Edge TPU: *_edgetpu.tflite
321
+ from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
322
+
323
+ super().__init__()
324
+ w = str(weights[0] if isinstance(weights, list) else weights)
325
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
326
+ w = attempt_download(w) # download if not local
327
+ fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
328
+ stride, names = 32, [f'class{i}' for i in range(1000)] # assign defaults
329
+ if data: # assign class names (optional)
330
+ with open(data, errors='ignore') as f:
331
+ names = yaml.safe_load(f)['names']
332
+
333
+ if pt: # PyTorch
334
+ model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
335
+ stride = max(int(model.stride.max()), 32) # model stride
336
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names
337
+ model.half() if fp16 else model.float()
338
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
339
+ elif jit: # TorchScript
340
+ LOGGER.info(f'Loading {w} for TorchScript inference...')
341
+ extra_files = {'config.txt': ''} # model metadata
342
+ model = torch.jit.load(w, _extra_files=extra_files)
343
+ model.half() if fp16 else model.float()
344
+ if extra_files['config.txt']:
345
+ d = json.loads(extra_files['config.txt']) # extra_files dict
346
+ stride, names = int(d['stride']), d['names']
347
+ elif dnn: # ONNX OpenCV DNN
348
+ LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
349
+ check_requirements(('opencv-python>=4.5.4',))
350
+ net = cv2.dnn.readNetFromONNX(w)
351
+ elif onnx: # ONNX Runtime
352
+ LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
353
+ cuda = torch.cuda.is_available()
354
+ check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
355
+ import onnxruntime
356
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
357
+ session = onnxruntime.InferenceSession(w, providers=providers)
358
+ meta = session.get_modelmeta().custom_metadata_map # metadata
359
+ if 'stride' in meta:
360
+ stride, names = int(meta['stride']), eval(meta['names'])
361
+ elif xml: # OpenVINO
362
+ LOGGER.info(f'Loading {w} for OpenVINO inference...')
363
+ check_requirements(('openvino',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
364
+ from openvino.runtime import Core, Layout, get_batch
365
+ ie = Core()
366
+ if not Path(w).is_file(): # if not *.xml
367
+ w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
368
+ network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
369
+ if network.get_parameters()[0].get_layout().empty:
370
+ network.get_parameters()[0].set_layout(Layout("NCHW"))
371
+ batch_dim = get_batch(network)
372
+ if batch_dim.is_static:
373
+ batch_size = batch_dim.get_length()
374
+ executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
375
+ output_layer = next(iter(executable_network.outputs))
376
+ meta = Path(w).with_suffix('.yaml')
377
+ if meta.exists():
378
+ stride, names = self._load_metadata(meta) # load metadata
379
+ elif engine: # TensorRT
380
+ LOGGER.info(f'Loading {w} for TensorRT inference...')
381
+ import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
382
+ check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
383
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
384
+ logger = trt.Logger(trt.Logger.INFO)
385
+ with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
386
+ model = runtime.deserialize_cuda_engine(f.read())
387
+ bindings = OrderedDict()
388
+ fp16 = False # default updated below
389
+ for index in range(model.num_bindings):
390
+ name = model.get_binding_name(index)
391
+ dtype = trt.nptype(model.get_binding_dtype(index))
392
+ shape = tuple(model.get_binding_shape(index))
393
+ data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
394
+ bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
395
+ if model.binding_is_input(index) and dtype == np.float16:
396
+ fp16 = True
397
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
398
+ context = model.create_execution_context()
399
+ batch_size = bindings['images'].shape[0]
400
+ elif coreml: # CoreML
401
+ LOGGER.info(f'Loading {w} for CoreML inference...')
402
+ import coremltools as ct
403
+ model = ct.models.MLModel(w)
404
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
405
+ if saved_model: # SavedModel
406
+ LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
407
+ import tensorflow as tf
408
+ keras = False # assume TF1 saved_model
409
+ model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
410
+ elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
411
+ LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
412
+ import tensorflow as tf
413
+
414
+ def wrap_frozen_graph(gd, inputs, outputs):
415
+ x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
416
+ ge = x.graph.as_graph_element
417
+ return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
418
+
419
+ gd = tf.Graph().as_graph_def() # graph_def
420
+ with open(w, 'rb') as f:
421
+ gd.ParseFromString(f.read())
422
+ frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
423
+ elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
424
+ try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
425
+ from tflite_runtime.interpreter import Interpreter, load_delegate
426
+ except ImportError:
427
+ import tensorflow as tf
428
+ Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
429
+ if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
430
+ LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
431
+ delegate = {
432
+ 'Linux': 'libedgetpu.so.1',
433
+ 'Darwin': 'libedgetpu.1.dylib',
434
+ 'Windows': 'edgetpu.dll'}[platform.system()]
435
+ interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
436
+ else: # Lite
437
+ LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
438
+ interpreter = Interpreter(model_path=w) # load TFLite model
439
+ interpreter.allocate_tensors() # allocate
440
+ input_details = interpreter.get_input_details() # inputs
441
+ output_details = interpreter.get_output_details() # outputs
442
+ elif tfjs:
443
+ raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
444
+ else:
445
+ raise Exception(f'ERROR: {w} is not a supported format')
446
+ self.__dict__.update(locals()) # assign all variables to self
447
+
448
+ def forward(self, im, augment=False, visualize=False, val=False):
449
+ # YOLOv5 MultiBackend inference
450
+ b, ch, h, w = im.shape # batch, channel, height, width
451
+ if self.fp16 and im.dtype != torch.float16:
452
+ im = im.half() # to FP16
453
+
454
+ if self.pt: # PyTorch
455
+ y = self.model(im, augment=augment, visualize=visualize)[0]
456
+ elif self.jit: # TorchScript
457
+ y = self.model(im)[0]
458
+ elif self.dnn: # ONNX OpenCV DNN
459
+ im = im.cpu().numpy() # torch to numpy
460
+ self.net.setInput(im)
461
+ y = self.net.forward()
462
+ elif self.onnx: # ONNX Runtime
463
+ im = im.cpu().numpy() # torch to numpy
464
+ y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
465
+ elif self.xml: # OpenVINO
466
+ im = im.cpu().numpy() # FP32
467
+ y = self.executable_network([im])[self.output_layer]
468
+ elif self.engine: # TensorRT
469
+ assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
470
+ self.binding_addrs['images'] = int(im.data_ptr())
471
+ self.context.execute_v2(list(self.binding_addrs.values()))
472
+ y = self.bindings['output'].data
473
+ elif self.coreml: # CoreML
474
+ im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
475
+ im = Image.fromarray((im[0] * 255).astype('uint8'))
476
+ # im = im.resize((192, 320), Image.ANTIALIAS)
477
+ y = self.model.predict({'image': im}) # coordinates are xywh normalized
478
+ if 'confidence' in y:
479
+ box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
480
+ conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
481
+ y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
482
+ else:
483
+ k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
484
+ y = y[k] # output
485
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
486
+ im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
487
+ if self.saved_model: # SavedModel
488
+ y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
489
+ elif self.pb: # GraphDef
490
+ y = self.frozen_func(x=self.tf.constant(im)).numpy()
491
+ else: # Lite or Edge TPU
492
+ input, output = self.input_details[0], self.output_details[0]
493
+ int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
494
+ if int8:
495
+ scale, zero_point = input['quantization']
496
+ im = (im / scale + zero_point).astype(np.uint8) # de-scale
497
+ self.interpreter.set_tensor(input['index'], im)
498
+ self.interpreter.invoke()
499
+ y = self.interpreter.get_tensor(output['index'])
500
+ if int8:
501
+ scale, zero_point = output['quantization']
502
+ y = (y.astype(np.float32) - zero_point) * scale # re-scale
503
+ y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
504
+
505
+ if isinstance(y, np.ndarray):
506
+ y = torch.tensor(y, device=self.device)
507
+ return (y, []) if val else y
508
+
509
+ def warmup(self, imgsz=(1, 3, 640, 640)):
510
+ # Warmup model by running inference once
511
+ warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
512
+ if any(warmup_types) and self.device.type != 'cpu':
513
+ im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
514
+ for _ in range(2 if self.jit else 1): #
515
+ self.forward(im) # warmup
516
+
517
+ @staticmethod
518
+ def model_type(p='path/to/model.pt'):
519
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
520
+ from export import export_formats
521
+ suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
522
+ check_suffix(p, suffixes) # checks
523
+ p = Path(p).name # eliminate trailing separators
524
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
525
+ xml |= xml2 # *_openvino_model or *.xml
526
+ tflite &= not edgetpu # *.tflite
527
+ return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
528
+
529
+ @staticmethod
530
+ def _load_metadata(f='path/to/meta.yaml'):
531
+ # Load metadata from meta.yaml if it exists
532
+ with open(f, errors='ignore') as f:
533
+ d = yaml.safe_load(f)
534
+ return d['stride'], d['names'] # assign stride, names
535
+
536
+
537
+ class AutoShape(nn.Module):
538
+ # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
539
+ conf = 0.25 # NMS confidence threshold
540
+ iou = 0.45 # NMS IoU threshold
541
+ agnostic = False # NMS class-agnostic
542
+ multi_label = False # NMS multiple labels per box
543
+ classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
544
+ max_det = 1000 # maximum number of detections per image
545
+ amp = False # Automatic Mixed Precision (AMP) inference
546
+
547
+ def __init__(self, model, verbose=True):
548
+ super().__init__()
549
+ if verbose:
550
+ LOGGER.info('Adding AutoShape... ')
551
+ copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
552
+ self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
553
+ self.pt = not self.dmb or model.pt # PyTorch model
554
+ self.model = model.eval()
555
+
556
+ def _apply(self, fn):
557
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
558
+ self = super()._apply(fn)
559
+ if self.pt:
560
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
561
+ m.stride = fn(m.stride)
562
+ m.grid = list(map(fn, m.grid))
563
+ if isinstance(m.anchor_grid, list):
564
+ m.anchor_grid = list(map(fn, m.anchor_grid))
565
+ return self
566
+
567
+ @torch.no_grad()
568
+ def forward(self, imgs, size=640, augment=False, profile=False):
569
+ # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
570
+ # file: imgs = 'data/images/zidane.jpg' # str or PosixPath
571
+ # URI: = 'https://ultralytics.com/images/zidane.jpg'
572
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
573
+ # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
574
+ # numpy: = np.zeros((640,1280,3)) # HWC
575
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
576
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
577
+
578
+ t = [time_sync()]
579
+ p = next(self.model.parameters()) if self.pt else torch.zeros(1, device=self.model.device) # for device, type
580
+ autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
581
+ if isinstance(imgs, torch.Tensor): # torch
582
+ with amp.autocast(autocast):
583
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
584
+
585
+ # Pre-process
586
+ n, imgs = (len(imgs), list(imgs)) if isinstance(imgs, (list, tuple)) else (1, [imgs]) # number, list of images
587
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
588
+ for i, im in enumerate(imgs):
589
+ f = f'image{i}' # filename
590
+ if isinstance(im, (str, Path)): # filename or uri
591
+ im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
592
+ im = np.asarray(exif_transpose(im))
593
+ elif isinstance(im, Image.Image): # PIL Image
594
+ im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
595
+ files.append(Path(f).with_suffix('.jpg').name)
596
+ if im.shape[0] < 5: # image in CHW
597
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
598
+ im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
599
+ s = im.shape[:2] # HWC
600
+ shape0.append(s) # image shape
601
+ g = (size / max(s)) # gain
602
+ shape1.append([y * g for y in s])
603
+ imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
604
+ shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
605
+ x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
606
+ x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
607
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
608
+ t.append(time_sync())
609
+
610
+ with amp.autocast(autocast):
611
+ # Inference
612
+ y = self.model(x, augment, profile) # forward
613
+ t.append(time_sync())
614
+
615
+ # Post-process
616
+ y = non_max_suppression(y if self.dmb else y[0],
617
+ self.conf,
618
+ self.iou,
619
+ self.classes,
620
+ self.agnostic,
621
+ self.multi_label,
622
+ max_det=self.max_det) # NMS
623
+ for i in range(n):
624
+ scale_coords(shape1, y[i][:, :4], shape0[i])
625
+
626
+ t.append(time_sync())
627
+ return Detections(imgs, y, files, t, self.names, x.shape)
628
+
629
+
630
+ class Detections:
631
+ # YOLOv5 detections class for inference results
632
+ def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
633
+ super().__init__()
634
+ d = pred[0].device # device
635
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
636
+ self.imgs = imgs # list of images as numpy arrays
637
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
638
+ self.names = names # class names
639
+ self.files = files # image filenames
640
+ self.times = times # profiling times
641
+ self.xyxy = pred # xyxy pixels
642
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
643
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
644
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
645
+ self.n = len(self.pred) # number of images (batch size)
646
+ self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
647
+ self.s = shape # inference BCHW shape
648
+
649
+ def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
650
+ crops = []
651
+ for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
652
+ s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
653
+ if pred.shape[0]:
654
+ for c in pred[:, -1].unique():
655
+ n = (pred[:, -1] == c).sum() # detections per class
656
+ s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
657
+ if show or save or render or crop:
658
+ annotator = Annotator(im, example=str(self.names))
659
+ for *box, conf, cls in reversed(pred): # xyxy, confidence, class
660
+ label = f'{self.names[int(cls)]} {conf:.2f}'
661
+ if crop:
662
+ file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
663
+ crops.append({
664
+ 'box': box,
665
+ 'conf': conf,
666
+ 'cls': cls,
667
+ 'label': label,
668
+ 'im': save_one_box(box, im, file=file, save=save)})
669
+ else: # all others
670
+ annotator.box_label(box, label if labels else '', color=colors(cls))
671
+ im = annotator.im
672
+ else:
673
+ s += '(no detections)'
674
+
675
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
676
+ if pprint:
677
+ print(s.rstrip(', '))
678
+ if show:
679
+ im.show(self.files[i]) # show
680
+ if save:
681
+ f = self.files[i]
682
+ im.save(save_dir / f) # save
683
+ if i == self.n - 1:
684
+ LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
685
+ if render:
686
+ self.imgs[i] = np.asarray(im)
687
+ if crop:
688
+ if save:
689
+ LOGGER.info(f'Saved results to {save_dir}\n')
690
+ return crops
691
+
692
+ def print(self):
693
+ self.display(pprint=True) # print results
694
+ print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
695
+
696
+ def show(self, labels=True):
697
+ self.display(show=True, labels=labels) # show results
698
+
699
+ def save(self, labels=True, save_dir='runs/detect/exp'):
700
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
701
+ self.display(save=True, labels=labels, save_dir=save_dir) # save results
702
+
703
+ def crop(self, save=True, save_dir='runs/detect/exp'):
704
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
705
+ return self.display(crop=True, save=save, save_dir=save_dir) # crop results
706
+
707
+ def render(self, labels=True):
708
+ self.display(render=True, labels=labels) # render results
709
+ return self.imgs
710
+
711
+ def pandas(self):
712
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
713
+ new = copy(self) # return copy
714
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
715
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
716
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
717
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
718
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
719
+ return new
720
+
721
+ def tolist(self):
722
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
723
+ r = range(self.n) # iterable
724
+ x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
725
+ # for d in x:
726
+ # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
727
+ # setattr(d, k, getattr(d, k)[0]) # pop out of list
728
+ return x
729
+
730
+ def __len__(self):
731
+ return self.n # override len(results)
732
+
733
+ def __str__(self):
734
+ self.print() # override print(results)
735
+ return ''
736
+
737
+
738
+ class Classify(nn.Module):
739
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
740
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
741
+ super().__init__()
742
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
743
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
744
+ self.flat = nn.Flatten()
745
+
746
+ def forward(self, x):
747
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
748
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
models/custom_yolov5s.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # parameters
3
+ nc: 1 # number of classes
4
+ depth_multiple: 0.33 # model depth multiple
5
+ width_multiple: 0.50 # layer channel multiple
6
+
7
+ # anchors
8
+ anchors:
9
+ - [10,13, 16,30, 33,23] # P3/8
10
+ - [30,61, 62,45, 59,119] # P4/16
11
+ - [116,90, 156,198, 373,326] # P5/32
12
+
13
+ # YOLOv5 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, BottleneckCSP, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 9, BottleneckCSP, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, BottleneckCSP, [512]],
23
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
24
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
25
+ [-1, 3, BottleneckCSP, [1024, False]], # 9
26
+ ]
27
+
28
+ # YOLOv5 head
29
+ head:
30
+ [[-1, 1, Conv, [512, 1, 1]],
31
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
33
+ [-1, 3, BottleneckCSP, [512, False]], # 13
34
+
35
+ [-1, 1, Conv, [256, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
38
+ [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
39
+
40
+ [-1, 1, Conv, [256, 3, 2]],
41
+ [[-1, 14], 1, Concat, [1]], # cat head P4
42
+ [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
43
+
44
+ [-1, 1, Conv, [512, 3, 2]],
45
+ [[-1, 10], 1, Concat, [1]], # cat head P5
46
+ [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
47
+
48
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
49
+ ]
models/experimental.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Experimental modules
4
+ """
5
+ import math
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ from models.common import Conv
12
+ from utils.downloads import attempt_download
13
+
14
+
15
+ class Sum(nn.Module):
16
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
17
+ def __init__(self, n, weight=False): # n: number of inputs
18
+ super().__init__()
19
+ self.weight = weight # apply weights boolean
20
+ self.iter = range(n - 1) # iter object
21
+ if weight:
22
+ self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
23
+
24
+ def forward(self, x):
25
+ y = x[0] # no weight
26
+ if self.weight:
27
+ w = torch.sigmoid(self.w) * 2
28
+ for i in self.iter:
29
+ y = y + x[i + 1] * w[i]
30
+ else:
31
+ for i in self.iter:
32
+ y = y + x[i + 1]
33
+ return y
34
+
35
+
36
+ class MixConv2d(nn.Module):
37
+ # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
38
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
39
+ super().__init__()
40
+ n = len(k) # number of convolutions
41
+ if equal_ch: # equal c_ per group
42
+ i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
43
+ c_ = [(i == g).sum() for g in range(n)] # intermediate channels
44
+ else: # equal weight.numel() per group
45
+ b = [c2] + [0] * n
46
+ a = np.eye(n + 1, n, k=-1)
47
+ a -= np.roll(a, 1, axis=1)
48
+ a *= np.array(k) ** 2
49
+ a[0] = 1
50
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
51
+
52
+ self.m = nn.ModuleList([
53
+ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
54
+ self.bn = nn.BatchNorm2d(c2)
55
+ self.act = nn.SiLU()
56
+
57
+ def forward(self, x):
58
+ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
59
+
60
+
61
+ class Ensemble(nn.ModuleList):
62
+ # Ensemble of models
63
+ def __init__(self):
64
+ super().__init__()
65
+
66
+ def forward(self, x, augment=False, profile=False, visualize=False):
67
+ y = [module(x, augment, profile, visualize)[0] for module in self]
68
+ # y = torch.stack(y).max(0)[0] # max ensemble
69
+ # y = torch.stack(y).mean(0) # mean ensemble
70
+ y = torch.cat(y, 1) # nms ensemble
71
+ return y, None # inference, train output
72
+
73
+
74
+ def attempt_load(weights, device=None, inplace=True, fuse=True):
75
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
76
+ from models.yolo import Detect, Model
77
+
78
+ model = Ensemble()
79
+ for w in weights if isinstance(weights, list) else [weights]:
80
+ ckpt = torch.load(attempt_download(w), map_location='cpu') # load
81
+ ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
82
+ model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
83
+
84
+ # Compatibility updates
85
+ for m in model.modules():
86
+ t = type(m)
87
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
88
+ m.inplace = inplace # torch 1.7.0 compatibility
89
+ if t is Detect and not isinstance(m.anchor_grid, list):
90
+ delattr(m, 'anchor_grid')
91
+ setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
92
+ elif t is Conv:
93
+ m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
94
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
95
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
96
+
97
+ if len(model) == 1:
98
+ return model[-1] # return model
99
+ print(f'Ensemble created with {weights}\n')
100
+ for k in 'names', 'nc', 'yaml':
101
+ setattr(model, k, getattr(model[0], k))
102
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
103
+ assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
104
+ return model # return ensemble
models/hub/anchors.yaml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Default anchors for COCO data
3
+
4
+
5
+ # P5 -------------------------------------------------------------------------------------------------------------------
6
+ # P5-640:
7
+ anchors_p5_640:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+
13
+ # P6 -------------------------------------------------------------------------------------------------------------------
14
+ # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
15
+ anchors_p6_640:
16
+ - [9,11, 21,19, 17,41] # P3/8
17
+ - [43,32, 39,70, 86,64] # P4/16
18
+ - [65,131, 134,130, 120,265] # P5/32
19
+ - [282,180, 247,354, 512,387] # P6/64
20
+
21
+ # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
22
+ anchors_p6_1280:
23
+ - [19,27, 44,40, 38,94] # P3/8
24
+ - [96,68, 86,152, 180,137] # P4/16
25
+ - [140,301, 303,264, 238,542] # P5/32
26
+ - [436,615, 739,380, 925,792] # P6/64
27
+
28
+ # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
29
+ anchors_p6_1920:
30
+ - [28,41, 67,59, 57,141] # P3/8
31
+ - [144,103, 129,227, 270,205] # P4/16
32
+ - [209,452, 455,396, 358,812] # P5/32
33
+ - [653,922, 1109,570, 1387,1187] # P6/64
34
+
35
+
36
+ # P7 -------------------------------------------------------------------------------------------------------------------
37
+ # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
38
+ anchors_p7_640:
39
+ - [11,11, 13,30, 29,20] # P3/8
40
+ - [30,46, 61,38, 39,92] # P4/16
41
+ - [78,80, 146,66, 79,163] # P5/32
42
+ - [149,150, 321,143, 157,303] # P6/64
43
+ - [257,402, 359,290, 524,372] # P7/128
44
+
45
+ # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
46
+ anchors_p7_1280:
47
+ - [19,22, 54,36, 32,77] # P3/8
48
+ - [70,83, 138,71, 75,173] # P4/16
49
+ - [165,159, 148,334, 375,151] # P5/32
50
+ - [334,317, 251,626, 499,474] # P6/64
51
+ - [750,326, 534,814, 1079,818] # P7/128
52
+
53
+ # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
54
+ anchors_p7_1920:
55
+ - [29,34, 81,55, 47,115] # P3/8
56
+ - [105,124, 207,107, 113,259] # P4/16
57
+ - [247,238, 222,500, 563,227] # P5/32
58
+ - [501,476, 376,939, 749,711] # P6/64
59
+ - [1126,489, 801,1222, 1618,1227] # P7/128
models/hub/yolov3-spp.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3-SPP head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, SPP, [512, [5, 9, 13]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/hub/yolov3-tiny.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,14, 23,27, 37,58] # P4/16
9
+ - [81,82, 135,169, 344,319] # P5/32
10
+
11
+ # YOLOv3-tiny backbone
12
+ backbone:
13
+ # [from, number, module, args]
14
+ [[-1, 1, Conv, [16, 3, 1]], # 0
15
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16
+ [-1, 1, Conv, [32, 3, 1]],
17
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20
+ [-1, 1, Conv, [128, 3, 1]],
21
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22
+ [-1, 1, Conv, [256, 3, 1]],
23
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24
+ [-1, 1, Conv, [512, 3, 1]],
25
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27
+ ]
28
+
29
+ # YOLOv3-tiny head
30
+ head:
31
+ [[-1, 1, Conv, [1024, 3, 1]],
32
+ [-1, 1, Conv, [256, 1, 1]],
33
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34
+
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
38
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39
+
40
+ [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41
+ ]
models/hub/yolov3.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3 head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, Conv, [512, 1, 1]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/hub/yolov5-bifpn.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 BiFPN head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5-fpn.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 FPN head
28
+ head:
29
+ [[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
30
+
31
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 3, C3, [512, False]], # 14 (P4/16-medium)
35
+
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 3, C3, [256, False]], # 18 (P3/8-small)
40
+
41
+ [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42
+ ]
models/hub/yolov5-p2.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [1024]],
21
+ [-1, 1, SPPF, [1024, 5]], # 9
22
+ ]
23
+
24
+ # YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
25
+ head:
26
+ [[-1, 1, Conv, [512, 1, 1]],
27
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
29
+ [-1, 3, C3, [512, False]], # 13
30
+
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
34
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
35
+
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 2], 1, Concat, [1]], # cat backbone P2
39
+ [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
40
+
41
+ [-1, 1, Conv, [128, 3, 2]],
42
+ [[-1, 18], 1, Concat, [1]], # cat head P3
43
+ [-1, 3, C3, [256, False]], # 24 (P3/8-small)
44
+
45
+ [-1, 1, Conv, [256, 3, 2]],
46
+ [[-1, 14], 1, Concat, [1]], # cat head P4
47
+ [-1, 3, C3, [512, False]], # 27 (P4/16-medium)
48
+
49
+ [-1, 1, Conv, [512, 3, 2]],
50
+ [[-1, 10], 1, Concat, [1]], # cat head P5
51
+ [-1, 3, C3, [1024, False]], # 30 (P5/32-large)
52
+
53
+ [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
54
+ ]
models/hub/yolov5-p34.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
13
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14
+ [ -1, 3, C3, [ 128 ] ],
15
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16
+ [ -1, 6, C3, [ 256 ] ],
17
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18
+ [ -1, 9, C3, [ 512 ] ],
19
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
20
+ [ -1, 3, C3, [ 1024 ] ],
21
+ [ -1, 1, SPPF, [ 1024, 5 ] ], # 9
22
+ ]
23
+
24
+ # YOLOv5 v6.0 head with (P3, P4) outputs
25
+ head:
26
+ [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
27
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
28
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
29
+ [ -1, 3, C3, [ 512, False ] ], # 13
30
+
31
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
32
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
34
+ [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
35
+
36
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
37
+ [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
38
+ [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
39
+
40
+ [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
41
+ ]
models/hub/yolov5-p6.yaml ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [768]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22
+ [-1, 3, C3, [1024]],
23
+ [-1, 1, SPPF, [1024, 5]], # 11
24
+ ]
25
+
26
+ # YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
27
+ head:
28
+ [[-1, 1, Conv, [768, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
31
+ [-1, 3, C3, [768, False]], # 15
32
+
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
36
+ [-1, 3, C3, [512, False]], # 19
37
+
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
41
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
42
+
43
+ [-1, 1, Conv, [256, 3, 2]],
44
+ [[-1, 20], 1, Concat, [1]], # cat head P4
45
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
46
+
47
+ [-1, 1, Conv, [512, 3, 2]],
48
+ [[-1, 16], 1, Concat, [1]], # cat head P5
49
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
50
+
51
+ [-1, 1, Conv, [768, 3, 2]],
52
+ [[-1, 12], 1, Concat, [1]], # cat head P6
53
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
54
+
55
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
56
+ ]
models/hub/yolov5-p7.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [768]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22
+ [-1, 3, C3, [1024]],
23
+ [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
24
+ [-1, 3, C3, [1280]],
25
+ [-1, 1, SPPF, [1280, 5]], # 13
26
+ ]
27
+
28
+ # YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
29
+ head:
30
+ [[-1, 1, Conv, [1024, 1, 1]],
31
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
+ [[-1, 10], 1, Concat, [1]], # cat backbone P6
33
+ [-1, 3, C3, [1024, False]], # 17
34
+
35
+ [-1, 1, Conv, [768, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
38
+ [-1, 3, C3, [768, False]], # 21
39
+
40
+ [-1, 1, Conv, [512, 1, 1]],
41
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
42
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
43
+ [-1, 3, C3, [512, False]], # 25
44
+
45
+ [-1, 1, Conv, [256, 1, 1]],
46
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
47
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
48
+ [-1, 3, C3, [256, False]], # 29 (P3/8-small)
49
+
50
+ [-1, 1, Conv, [256, 3, 2]],
51
+ [[-1, 26], 1, Concat, [1]], # cat head P4
52
+ [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
53
+
54
+ [-1, 1, Conv, [512, 3, 2]],
55
+ [[-1, 22], 1, Concat, [1]], # cat head P5
56
+ [-1, 3, C3, [768, False]], # 35 (P5/32-large)
57
+
58
+ [-1, 1, Conv, [768, 3, 2]],
59
+ [[-1, 18], 1, Concat, [1]], # cat head P6
60
+ [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
61
+
62
+ [-1, 1, Conv, [1024, 3, 2]],
63
+ [[-1, 14], 1, Concat, [1]], # cat head P7
64
+ [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
65
+
66
+ [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
67
+ ]
models/hub/yolov5-panet.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 PANet head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5l6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5m6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.67 # model depth multiple
6
+ width_multiple: 0.75 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5n6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.25 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5s-ghost.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3Ghost, [128]],
18
+ [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3Ghost, [256]],
20
+ [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3Ghost, [512]],
22
+ [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3Ghost, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, GhostConv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3Ghost, [512, False]], # 13
33
+
34
+ [-1, 1, GhostConv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, GhostConv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, GhostConv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5s-transformer.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5s6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5x6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.33 # model depth multiple
6
+ width_multiple: 1.25 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/tf.py ADDED
@@ -0,0 +1,574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ TensorFlow, Keras and TFLite versions of YOLOv5
4
+ Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
5
+
6
+ Usage:
7
+ $ python models/tf.py --weights yolov5s.pt
8
+
9
+ Export:
10
+ $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
11
+ """
12
+
13
+ import argparse
14
+ import sys
15
+ from copy import deepcopy
16
+ from pathlib import Path
17
+
18
+ FILE = Path(__file__).resolve()
19
+ ROOT = FILE.parents[1] # YOLOv5 root directory
20
+ if str(ROOT) not in sys.path:
21
+ sys.path.append(str(ROOT)) # add ROOT to PATH
22
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
23
+
24
+ import numpy as np
25
+ import tensorflow as tf
26
+ import torch
27
+ import torch.nn as nn
28
+ from tensorflow import keras
29
+
30
+ from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
31
+ DWConvTranspose2d, Focus, autopad)
32
+ from models.experimental import MixConv2d, attempt_load
33
+ from models.yolo import Detect
34
+ from utils.activations import SiLU
35
+ from utils.general import LOGGER, make_divisible, print_args
36
+
37
+
38
+ class TFBN(keras.layers.Layer):
39
+ # TensorFlow BatchNormalization wrapper
40
+ def __init__(self, w=None):
41
+ super().__init__()
42
+ self.bn = keras.layers.BatchNormalization(
43
+ beta_initializer=keras.initializers.Constant(w.bias.numpy()),
44
+ gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
45
+ moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
46
+ moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
47
+ epsilon=w.eps)
48
+
49
+ def call(self, inputs):
50
+ return self.bn(inputs)
51
+
52
+
53
+ class TFPad(keras.layers.Layer):
54
+ # Pad inputs in spatial dimensions 1 and 2
55
+ def __init__(self, pad):
56
+ super().__init__()
57
+ if isinstance(pad, int):
58
+ self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
59
+ else: # tuple/list
60
+ self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
61
+
62
+ def call(self, inputs):
63
+ return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
64
+
65
+
66
+ class TFConv(keras.layers.Layer):
67
+ # Standard convolution
68
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
69
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
70
+ super().__init__()
71
+ assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
72
+ # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
73
+ # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
74
+ conv = keras.layers.Conv2D(
75
+ filters=c2,
76
+ kernel_size=k,
77
+ strides=s,
78
+ padding='SAME' if s == 1 else 'VALID',
79
+ use_bias=not hasattr(w, 'bn'),
80
+ kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
81
+ bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
82
+ self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
83
+ self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
84
+ self.act = activations(w.act) if act else tf.identity
85
+
86
+ def call(self, inputs):
87
+ return self.act(self.bn(self.conv(inputs)))
88
+
89
+
90
+ class TFDWConv(keras.layers.Layer):
91
+ # Depthwise convolution
92
+ def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
93
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
94
+ super().__init__()
95
+ assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
96
+ conv = keras.layers.DepthwiseConv2D(
97
+ kernel_size=k,
98
+ depth_multiplier=c2 // c1,
99
+ strides=s,
100
+ padding='SAME' if s == 1 else 'VALID',
101
+ use_bias=not hasattr(w, 'bn'),
102
+ depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
103
+ bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
104
+ self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
105
+ self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
106
+ self.act = activations(w.act) if act else tf.identity
107
+
108
+ def call(self, inputs):
109
+ return self.act(self.bn(self.conv(inputs)))
110
+
111
+
112
+ class TFDWConvTranspose2d(keras.layers.Layer):
113
+ # Depthwise ConvTranspose2d
114
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
115
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
116
+ super().__init__()
117
+ assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
118
+ assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
119
+ weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
120
+ self.c1 = c1
121
+ self.conv = [
122
+ keras.layers.Conv2DTranspose(filters=1,
123
+ kernel_size=k,
124
+ strides=s,
125
+ padding='VALID',
126
+ output_padding=p2,
127
+ use_bias=True,
128
+ kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
129
+ bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
130
+
131
+ def call(self, inputs):
132
+ return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
133
+
134
+
135
+ class TFFocus(keras.layers.Layer):
136
+ # Focus wh information into c-space
137
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
138
+ # ch_in, ch_out, kernel, stride, padding, groups
139
+ super().__init__()
140
+ self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
141
+
142
+ def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
143
+ # inputs = inputs / 255 # normalize 0-255 to 0-1
144
+ inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
145
+ return self.conv(tf.concat(inputs, 3))
146
+
147
+
148
+ class TFBottleneck(keras.layers.Layer):
149
+ # Standard bottleneck
150
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
151
+ super().__init__()
152
+ c_ = int(c2 * e) # hidden channels
153
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
154
+ self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
155
+ self.add = shortcut and c1 == c2
156
+
157
+ def call(self, inputs):
158
+ return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
159
+
160
+
161
+ class TFCrossConv(keras.layers.Layer):
162
+ # Cross Convolution
163
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
164
+ super().__init__()
165
+ c_ = int(c2 * e) # hidden channels
166
+ self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
167
+ self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
168
+ self.add = shortcut and c1 == c2
169
+
170
+ def call(self, inputs):
171
+ return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
172
+
173
+
174
+ class TFConv2d(keras.layers.Layer):
175
+ # Substitution for PyTorch nn.Conv2D
176
+ def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
177
+ super().__init__()
178
+ assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
179
+ self.conv = keras.layers.Conv2D(filters=c2,
180
+ kernel_size=k,
181
+ strides=s,
182
+ padding='VALID',
183
+ use_bias=bias,
184
+ kernel_initializer=keras.initializers.Constant(
185
+ w.weight.permute(2, 3, 1, 0).numpy()),
186
+ bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
187
+
188
+ def call(self, inputs):
189
+ return self.conv(inputs)
190
+
191
+
192
+ class TFBottleneckCSP(keras.layers.Layer):
193
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
194
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
195
+ # ch_in, ch_out, number, shortcut, groups, expansion
196
+ super().__init__()
197
+ c_ = int(c2 * e) # hidden channels
198
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
199
+ self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
200
+ self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
201
+ self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
202
+ self.bn = TFBN(w.bn)
203
+ self.act = lambda x: keras.activations.swish(x)
204
+ self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
205
+
206
+ def call(self, inputs):
207
+ y1 = self.cv3(self.m(self.cv1(inputs)))
208
+ y2 = self.cv2(inputs)
209
+ return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
210
+
211
+
212
+ class TFC3(keras.layers.Layer):
213
+ # CSP Bottleneck with 3 convolutions
214
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
215
+ # ch_in, ch_out, number, shortcut, groups, expansion
216
+ super().__init__()
217
+ c_ = int(c2 * e) # hidden channels
218
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
219
+ self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
220
+ self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
221
+ self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
222
+
223
+ def call(self, inputs):
224
+ return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
225
+
226
+
227
+ class TFC3x(keras.layers.Layer):
228
+ # 3 module with cross-convolutions
229
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
230
+ # ch_in, ch_out, number, shortcut, groups, expansion
231
+ super().__init__()
232
+ c_ = int(c2 * e) # hidden channels
233
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
234
+ self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
235
+ self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
236
+ self.m = keras.Sequential([
237
+ TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
238
+
239
+ def call(self, inputs):
240
+ return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
241
+
242
+
243
+ class TFSPP(keras.layers.Layer):
244
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
245
+ def __init__(self, c1, c2, k=(5, 9, 13), w=None):
246
+ super().__init__()
247
+ c_ = c1 // 2 # hidden channels
248
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
249
+ self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
250
+ self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
251
+
252
+ def call(self, inputs):
253
+ x = self.cv1(inputs)
254
+ return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
255
+
256
+
257
+ class TFSPPF(keras.layers.Layer):
258
+ # Spatial pyramid pooling-Fast layer
259
+ def __init__(self, c1, c2, k=5, w=None):
260
+ super().__init__()
261
+ c_ = c1 // 2 # hidden channels
262
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
263
+ self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
264
+ self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
265
+
266
+ def call(self, inputs):
267
+ x = self.cv1(inputs)
268
+ y1 = self.m(x)
269
+ y2 = self.m(y1)
270
+ return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
271
+
272
+
273
+ class TFDetect(keras.layers.Layer):
274
+ # TF YOLOv5 Detect layer
275
+ def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
276
+ super().__init__()
277
+ self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
278
+ self.nc = nc # number of classes
279
+ self.no = nc + 5 # number of outputs per anchor
280
+ self.nl = len(anchors) # number of detection layers
281
+ self.na = len(anchors[0]) // 2 # number of anchors
282
+ self.grid = [tf.zeros(1)] * self.nl # init grid
283
+ self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
284
+ self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
285
+ self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
286
+ self.training = False # set to False after building model
287
+ self.imgsz = imgsz
288
+ for i in range(self.nl):
289
+ ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
290
+ self.grid[i] = self._make_grid(nx, ny)
291
+
292
+ def call(self, inputs):
293
+ z = [] # inference output
294
+ x = []
295
+ for i in range(self.nl):
296
+ x.append(self.m[i](inputs[i]))
297
+ # x(bs,20,20,255) to x(bs,3,20,20,85)
298
+ ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
299
+ x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
300
+
301
+ if not self.training: # inference
302
+ y = tf.sigmoid(x[i])
303
+ grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
304
+ anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
305
+ xy = (y[..., 0:2] * 2 + grid) * self.stride[i] # xy
306
+ wh = y[..., 2:4] ** 2 * anchor_grid
307
+ # Normalize xywh to 0-1 to reduce calibration error
308
+ xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
309
+ wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
310
+ y = tf.concat([xy, wh, y[..., 4:]], -1)
311
+ z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
312
+
313
+ return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x)
314
+
315
+ @staticmethod
316
+ def _make_grid(nx=20, ny=20):
317
+ # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
318
+ # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
319
+ xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
320
+ return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
321
+
322
+
323
+ class TFUpsample(keras.layers.Layer):
324
+ # TF version of torch.nn.Upsample()
325
+ def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
326
+ super().__init__()
327
+ assert scale_factor == 2, "scale_factor must be 2"
328
+ self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
329
+ # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
330
+ # with default arguments: align_corners=False, half_pixel_centers=False
331
+ # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
332
+ # size=(x.shape[1] * 2, x.shape[2] * 2))
333
+
334
+ def call(self, inputs):
335
+ return self.upsample(inputs)
336
+
337
+
338
+ class TFConcat(keras.layers.Layer):
339
+ # TF version of torch.concat()
340
+ def __init__(self, dimension=1, w=None):
341
+ super().__init__()
342
+ assert dimension == 1, "convert only NCHW to NHWC concat"
343
+ self.d = 3
344
+
345
+ def call(self, inputs):
346
+ return tf.concat(inputs, self.d)
347
+
348
+
349
+ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
350
+ LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
351
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
352
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
353
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
354
+
355
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
356
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
357
+ m_str = m
358
+ m = eval(m) if isinstance(m, str) else m # eval strings
359
+ for j, a in enumerate(args):
360
+ try:
361
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
362
+ except NameError:
363
+ pass
364
+
365
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
366
+ if m in [
367
+ nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
368
+ BottleneckCSP, C3, C3x]:
369
+ c1, c2 = ch[f], args[0]
370
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
371
+
372
+ args = [c1, c2, *args[1:]]
373
+ if m in [BottleneckCSP, C3, C3x]:
374
+ args.insert(2, n)
375
+ n = 1
376
+ elif m is nn.BatchNorm2d:
377
+ args = [ch[f]]
378
+ elif m is Concat:
379
+ c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
380
+ elif m is Detect:
381
+ args.append([ch[x + 1] for x in f])
382
+ if isinstance(args[1], int): # number of anchors
383
+ args[1] = [list(range(args[1] * 2))] * len(f)
384
+ args.append(imgsz)
385
+ else:
386
+ c2 = ch[f]
387
+
388
+ tf_m = eval('TF' + m_str.replace('nn.', ''))
389
+ m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
390
+ else tf_m(*args, w=model.model[i]) # module
391
+
392
+ torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
393
+ t = str(m)[8:-2].replace('__main__.', '') # module type
394
+ np = sum(x.numel() for x in torch_m_.parameters()) # number params
395
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
396
+ LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
397
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
398
+ layers.append(m_)
399
+ ch.append(c2)
400
+ return keras.Sequential(layers), sorted(save)
401
+
402
+
403
+ class TFModel:
404
+ # TF YOLOv5 model
405
+ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
406
+ super().__init__()
407
+ if isinstance(cfg, dict):
408
+ self.yaml = cfg # model dict
409
+ else: # is *.yaml
410
+ import yaml # for torch hub
411
+ self.yaml_file = Path(cfg).name
412
+ with open(cfg) as f:
413
+ self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
414
+
415
+ # Define model
416
+ if nc and nc != self.yaml['nc']:
417
+ LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
418
+ self.yaml['nc'] = nc # override yaml value
419
+ self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
420
+
421
+ def predict(self,
422
+ inputs,
423
+ tf_nms=False,
424
+ agnostic_nms=False,
425
+ topk_per_class=100,
426
+ topk_all=100,
427
+ iou_thres=0.45,
428
+ conf_thres=0.25):
429
+ y = [] # outputs
430
+ x = inputs
431
+ for m in self.model.layers:
432
+ if m.f != -1: # if not from previous layer
433
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
434
+
435
+ x = m(x) # run
436
+ y.append(x if m.i in self.savelist else None) # save output
437
+
438
+ # Add TensorFlow NMS
439
+ if tf_nms:
440
+ boxes = self._xywh2xyxy(x[0][..., :4])
441
+ probs = x[0][:, :, 4:5]
442
+ classes = x[0][:, :, 5:]
443
+ scores = probs * classes
444
+ if agnostic_nms:
445
+ nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
446
+ else:
447
+ boxes = tf.expand_dims(boxes, 2)
448
+ nms = tf.image.combined_non_max_suppression(boxes,
449
+ scores,
450
+ topk_per_class,
451
+ topk_all,
452
+ iou_thres,
453
+ conf_thres,
454
+ clip_boxes=False)
455
+ return nms, x[1]
456
+ return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
457
+ # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
458
+ # xywh = x[..., :4] # x(6300,4) boxes
459
+ # conf = x[..., 4:5] # x(6300,1) confidences
460
+ # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
461
+ # return tf.concat([conf, cls, xywh], 1)
462
+
463
+ @staticmethod
464
+ def _xywh2xyxy(xywh):
465
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
466
+ x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
467
+ return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
468
+
469
+
470
+ class AgnosticNMS(keras.layers.Layer):
471
+ # TF Agnostic NMS
472
+ def call(self, input, topk_all, iou_thres, conf_thres):
473
+ # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
474
+ return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
475
+ input,
476
+ fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
477
+ name='agnostic_nms')
478
+
479
+ @staticmethod
480
+ def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
481
+ boxes, classes, scores = x
482
+ class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
483
+ scores_inp = tf.reduce_max(scores, -1)
484
+ selected_inds = tf.image.non_max_suppression(boxes,
485
+ scores_inp,
486
+ max_output_size=topk_all,
487
+ iou_threshold=iou_thres,
488
+ score_threshold=conf_thres)
489
+ selected_boxes = tf.gather(boxes, selected_inds)
490
+ padded_boxes = tf.pad(selected_boxes,
491
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
492
+ mode="CONSTANT",
493
+ constant_values=0.0)
494
+ selected_scores = tf.gather(scores_inp, selected_inds)
495
+ padded_scores = tf.pad(selected_scores,
496
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
497
+ mode="CONSTANT",
498
+ constant_values=-1.0)
499
+ selected_classes = tf.gather(class_inds, selected_inds)
500
+ padded_classes = tf.pad(selected_classes,
501
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
502
+ mode="CONSTANT",
503
+ constant_values=-1.0)
504
+ valid_detections = tf.shape(selected_inds)[0]
505
+ return padded_boxes, padded_scores, padded_classes, valid_detections
506
+
507
+
508
+ def activations(act=nn.SiLU):
509
+ # Returns TF activation from input PyTorch activation
510
+ if isinstance(act, nn.LeakyReLU):
511
+ return lambda x: keras.activations.relu(x, alpha=0.1)
512
+ elif isinstance(act, nn.Hardswish):
513
+ return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
514
+ elif isinstance(act, (nn.SiLU, SiLU)):
515
+ return lambda x: keras.activations.swish(x)
516
+ else:
517
+ raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
518
+
519
+
520
+ def representative_dataset_gen(dataset, ncalib=100):
521
+ # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
522
+ for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
523
+ im = np.transpose(img, [1, 2, 0])
524
+ im = np.expand_dims(im, axis=0).astype(np.float32)
525
+ im /= 255
526
+ yield [im]
527
+ if n >= ncalib:
528
+ break
529
+
530
+
531
+ def run(
532
+ weights=ROOT / 'yolov5s.pt', # weights path
533
+ imgsz=(640, 640), # inference size h,w
534
+ batch_size=1, # batch size
535
+ dynamic=False, # dynamic batch size
536
+ ):
537
+ # PyTorch model
538
+ im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
539
+ model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
540
+ _ = model(im) # inference
541
+ model.info()
542
+
543
+ # TensorFlow model
544
+ im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
545
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
546
+ _ = tf_model.predict(im) # inference
547
+
548
+ # Keras model
549
+ im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
550
+ keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
551
+ keras_model.summary()
552
+
553
+ LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
554
+
555
+
556
+ def parse_opt():
557
+ parser = argparse.ArgumentParser()
558
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
559
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
560
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
561
+ parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
562
+ opt = parser.parse_args()
563
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
564
+ print_args(vars(opt))
565
+ return opt
566
+
567
+
568
+ def main(opt):
569
+ run(**vars(opt))
570
+
571
+
572
+ if __name__ == "__main__":
573
+ opt = parse_opt()
574
+ main(opt)
models/yolo.py ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ YOLO-specific modules
4
+
5
+ Usage:
6
+ $ python path/to/models/yolo.py --cfg yolov5s.yaml
7
+ """
8
+
9
+ import argparse
10
+ import os
11
+ import platform
12
+ import sys
13
+ from copy import deepcopy
14
+ from pathlib import Path
15
+
16
+ FILE = Path(__file__).resolve()
17
+ ROOT = FILE.parents[1] # YOLOv5 root directory
18
+ if str(ROOT) not in sys.path:
19
+ sys.path.append(str(ROOT)) # add ROOT to PATH
20
+ if platform.system() != 'Windows':
21
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
22
+
23
+ from models.common import *
24
+ from models.experimental import *
25
+ from utils.autoanchor import check_anchor_order
26
+ from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
27
+ from utils.plots import feature_visualization
28
+ from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
29
+ time_sync)
30
+
31
+ try:
32
+ import thop # for FLOPs computation
33
+ except ImportError:
34
+ thop = None
35
+
36
+
37
+ class Detect(nn.Module):
38
+ stride = None # strides computed during build
39
+ onnx_dynamic = False # ONNX export parameter
40
+ export = False # export mode
41
+
42
+ def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
43
+ super().__init__()
44
+ self.nc = nc # number of classes
45
+ self.no = nc + 5 # number of outputs per anchor
46
+ self.nl = len(anchors) # number of detection layers
47
+ self.na = len(anchors[0]) // 2 # number of anchors
48
+ self.grid = [torch.zeros(1)] * self.nl # init grid
49
+ self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
50
+ self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
51
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
52
+ self.inplace = inplace # use in-place ops (e.g. slice assignment)
53
+
54
+ def forward(self, x):
55
+ z = [] # inference output
56
+ for i in range(self.nl):
57
+ x[i] = self.m[i](x[i]) # conv
58
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
59
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
60
+
61
+ if not self.training: # inference
62
+ if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
63
+ self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
64
+
65
+ y = x[i].sigmoid()
66
+ if self.inplace:
67
+ y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy
68
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
69
+ else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
70
+ xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
71
+ xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
72
+ wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
73
+ y = torch.cat((xy, wh, conf), 4)
74
+ z.append(y.view(bs, -1, self.no))
75
+
76
+ return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
77
+
78
+ def _make_grid(self, nx=20, ny=20, i=0):
79
+ d = self.anchors[i].device
80
+ t = self.anchors[i].dtype
81
+ shape = 1, self.na, ny, nx, 2 # grid shape
82
+ y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
83
+ if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
84
+ yv, xv = torch.meshgrid(y, x, indexing='ij')
85
+ else:
86
+ yv, xv = torch.meshgrid(y, x)
87
+ grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
88
+ anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
89
+ return grid, anchor_grid
90
+
91
+
92
+ class Model(nn.Module):
93
+ # YOLOv5 model
94
+ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
95
+ super().__init__()
96
+ if isinstance(cfg, dict):
97
+ self.yaml = cfg # model dict
98
+ else: # is *.yaml
99
+ import yaml # for torch hub
100
+ self.yaml_file = Path(cfg).name
101
+ with open(cfg, encoding='ascii', errors='ignore') as f:
102
+ self.yaml = yaml.safe_load(f) # model dict
103
+
104
+ # Define model
105
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
106
+ if nc and nc != self.yaml['nc']:
107
+ LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
108
+ self.yaml['nc'] = nc # override yaml value
109
+ if anchors:
110
+ LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
111
+ self.yaml['anchors'] = round(anchors) # override yaml value
112
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
113
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
114
+ self.inplace = self.yaml.get('inplace', True)
115
+
116
+ # Build strides, anchors
117
+ m = self.model[-1] # Detect()
118
+ if isinstance(m, Detect):
119
+ s = 256 # 2x min stride
120
+ m.inplace = self.inplace
121
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
122
+ check_anchor_order(m) # must be in pixel-space (not grid-space)
123
+ m.anchors /= m.stride.view(-1, 1, 1)
124
+ self.stride = m.stride
125
+ self._initialize_biases() # only run once
126
+
127
+ # Init weights, biases
128
+ initialize_weights(self)
129
+ self.info()
130
+ LOGGER.info('')
131
+
132
+ def forward(self, x, augment=False, profile=False, visualize=False):
133
+ if augment:
134
+ return self._forward_augment(x) # augmented inference, None
135
+ return self._forward_once(x, profile, visualize) # single-scale inference, train
136
+
137
+ def _forward_augment(self, x):
138
+ img_size = x.shape[-2:] # height, width
139
+ s = [1, 0.83, 0.67] # scales
140
+ f = [None, 3, None] # flips (2-ud, 3-lr)
141
+ y = [] # outputs
142
+ for si, fi in zip(s, f):
143
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
144
+ yi = self._forward_once(xi)[0] # forward
145
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
146
+ yi = self._descale_pred(yi, fi, si, img_size)
147
+ y.append(yi)
148
+ y = self._clip_augmented(y) # clip augmented tails
149
+ return torch.cat(y, 1), None # augmented inference, train
150
+
151
+ def _forward_once(self, x, profile=False, visualize=False):
152
+ y, dt = [], [] # outputs
153
+ for m in self.model:
154
+ if m.f != -1: # if not from previous layer
155
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
156
+ if profile:
157
+ self._profile_one_layer(m, x, dt)
158
+ x = m(x) # run
159
+ y.append(x if m.i in self.save else None) # save output
160
+ if visualize:
161
+ feature_visualization(x, m.type, m.i, save_dir=visualize)
162
+ return x
163
+
164
+ def _descale_pred(self, p, flips, scale, img_size):
165
+ # de-scale predictions following augmented inference (inverse operation)
166
+ if self.inplace:
167
+ p[..., :4] /= scale # de-scale
168
+ if flips == 2:
169
+ p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
170
+ elif flips == 3:
171
+ p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
172
+ else:
173
+ x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
174
+ if flips == 2:
175
+ y = img_size[0] - y # de-flip ud
176
+ elif flips == 3:
177
+ x = img_size[1] - x # de-flip lr
178
+ p = torch.cat((x, y, wh, p[..., 4:]), -1)
179
+ return p
180
+
181
+ def _clip_augmented(self, y):
182
+ # Clip YOLOv5 augmented inference tails
183
+ nl = self.model[-1].nl # number of detection layers (P3-P5)
184
+ g = sum(4 ** x for x in range(nl)) # grid points
185
+ e = 1 # exclude layer count
186
+ i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
187
+ y[0] = y[0][:, :-i] # large
188
+ i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
189
+ y[-1] = y[-1][:, i:] # small
190
+ return y
191
+
192
+ def _profile_one_layer(self, m, x, dt):
193
+ c = isinstance(m, Detect) # is final layer, copy input as inplace fix
194
+ o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
195
+ t = time_sync()
196
+ for _ in range(10):
197
+ m(x.copy() if c else x)
198
+ dt.append((time_sync() - t) * 100)
199
+ if m == self.model[0]:
200
+ LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
201
+ LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
202
+ if c:
203
+ LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
204
+
205
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
206
+ # https://arxiv.org/abs/1708.02002 section 3.3
207
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
208
+ m = self.model[-1] # Detect() module
209
+ for mi, s in zip(m.m, m.stride): # from
210
+ b = mi.bias.view(m.na, -1).detach() # conv.bias(255) to (3,85)
211
+ b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
212
+ b[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
213
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
214
+
215
+ def _print_biases(self):
216
+ m = self.model[-1] # Detect() module
217
+ for mi in m.m: # from
218
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
219
+ LOGGER.info(
220
+ ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
221
+
222
+ # def _print_weights(self):
223
+ # for m in self.model.modules():
224
+ # if type(m) is Bottleneck:
225
+ # LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
226
+
227
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
228
+ LOGGER.info('Fusing layers... ')
229
+ for m in self.model.modules():
230
+ if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
231
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
232
+ delattr(m, 'bn') # remove batchnorm
233
+ m.forward = m.forward_fuse # update forward
234
+ self.info()
235
+ return self
236
+
237
+ def info(self, verbose=False, img_size=640): # print model information
238
+ model_info(self, verbose, img_size)
239
+
240
+ def _apply(self, fn):
241
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
242
+ self = super()._apply(fn)
243
+ m = self.model[-1] # Detect()
244
+ if isinstance(m, Detect):
245
+ m.stride = fn(m.stride)
246
+ m.grid = list(map(fn, m.grid))
247
+ if isinstance(m.anchor_grid, list):
248
+ m.anchor_grid = list(map(fn, m.anchor_grid))
249
+ return self
250
+
251
+
252
+ def parse_model(d, ch): # model_dict, input_channels(3)
253
+ LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
254
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
255
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
256
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
257
+
258
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
259
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
260
+ m = eval(m) if isinstance(m, str) else m # eval strings
261
+ for j, a in enumerate(args):
262
+ try:
263
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
264
+ except NameError:
265
+ pass
266
+
267
+ n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
268
+ if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
269
+ BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):
270
+ c1, c2 = ch[f], args[0]
271
+ if c2 != no: # if not output
272
+ c2 = make_divisible(c2 * gw, 8)
273
+
274
+ args = [c1, c2, *args[1:]]
275
+ if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:
276
+ args.insert(2, n) # number of repeats
277
+ n = 1
278
+ elif m is nn.BatchNorm2d:
279
+ args = [ch[f]]
280
+ elif m is Concat:
281
+ c2 = sum(ch[x] for x in f)
282
+ elif m is Detect:
283
+ args.append([ch[x] for x in f])
284
+ if isinstance(args[1], int): # number of anchors
285
+ args[1] = [list(range(args[1] * 2))] * len(f)
286
+ elif m is Contract:
287
+ c2 = ch[f] * args[0] ** 2
288
+ elif m is Expand:
289
+ c2 = ch[f] // args[0] ** 2
290
+ else:
291
+ c2 = ch[f]
292
+
293
+ m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
294
+ t = str(m)[8:-2].replace('__main__.', '') # module type
295
+ np = sum(x.numel() for x in m_.parameters()) # number params
296
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
297
+ LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
298
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
299
+ layers.append(m_)
300
+ if i == 0:
301
+ ch = []
302
+ ch.append(c2)
303
+ return nn.Sequential(*layers), sorted(save)
304
+
305
+
306
+ if __name__ == '__main__':
307
+ parser = argparse.ArgumentParser()
308
+ parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
309
+ parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
310
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
311
+ parser.add_argument('--profile', action='store_true', help='profile model speed')
312
+ parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
313
+ parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
314
+ opt = parser.parse_args()
315
+ opt.cfg = check_yaml(opt.cfg) # check YAML
316
+ print_args(vars(opt))
317
+ device = select_device(opt.device)
318
+
319
+ # Create model
320
+ im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
321
+ model = Model(opt.cfg).to(device)
322
+
323
+ # Options
324
+ if opt.line_profile: # profile layer by layer
325
+ _ = model(im, profile=True)
326
+
327
+ elif opt.profile: # profile forward-backward
328
+ results = profile(input=im, ops=[model], n=3)
329
+
330
+ elif opt.test: # test all models
331
+ for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
332
+ try:
333
+ _ = Model(cfg)
334
+ except Exception as e:
335
+ print(f'Error in {cfg}: {e}')
336
+
337
+ else: # report fused model summary
338
+ model.fuse()
models/yolov5l.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/yolov5m.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.67 # model depth multiple
6
+ width_multiple: 0.75 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/yolov5n.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.25 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/yolov5s.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/yolov5x.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.33 # model depth multiple
6
+ width_multiple: 1.25 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]