SamDaLamb commited on
Commit
bf48ed8
·
verified ·
1 Parent(s): 1e4b791

Delete hubconf.py

Browse files
Files changed (1) hide show
  1. hubconf.py +0 -145
hubconf.py DELETED
@@ -1,145 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
4
-
5
- Usage:
6
- import torch
7
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
8
- model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch
9
- """
10
-
11
- import torch
12
-
13
-
14
- def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
15
- """Creates or loads a YOLOv5 model
16
-
17
- Arguments:
18
- name (str): model name 'yolov5s' or path 'path/to/best.pt'
19
- pretrained (bool): load pretrained weights into the model
20
- channels (int): number of input channels
21
- classes (int): number of model classes
22
- autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
23
- verbose (bool): print all information to screen
24
- device (str, torch.device, None): device to use for model parameters
25
-
26
- Returns:
27
- YOLOv5 model
28
- """
29
- from pathlib import Path
30
-
31
- from models.common import AutoShape, DetectMultiBackend
32
- from models.yolo import Model
33
- from utils.downloads import attempt_download
34
- from utils.general import LOGGER, check_requirements, intersect_dicts, logging
35
- from utils.torch_utils import select_device
36
-
37
- if not verbose:
38
- LOGGER.setLevel(logging.WARNING)
39
- check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
40
- name = Path(name)
41
- path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
42
- try:
43
- device = select_device(device)
44
-
45
- if pretrained and channels == 3 and classes == 80:
46
- model = DetectMultiBackend(path, device=device, fuse=autoshape) # download/load FP32 model
47
- # model = models.experimental.attempt_load(path, map_location=device) # download/load FP32 model
48
- else:
49
- cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
50
- model = Model(cfg, channels, classes) # create model
51
- if pretrained:
52
- ckpt = torch.load(attempt_download(path), map_location=device) # load
53
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
54
- csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
55
- model.load_state_dict(csd, strict=False) # load
56
- if len(ckpt['model'].names) == classes:
57
- model.names = ckpt['model'].names # set class names attribute
58
- if autoshape:
59
- model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
60
- return model.to(device)
61
-
62
- except Exception as e:
63
- help_url = 'https://github.com/ultralytics/yolov5/issues/36'
64
- s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
65
- raise Exception(s) from e
66
-
67
-
68
- def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
69
- # YOLOv5 custom or local model
70
- return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
71
-
72
-
73
- def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
74
- # YOLOv5-nano model https://github.com/ultralytics/yolov5
75
- return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
76
-
77
-
78
- def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
79
- # YOLOv5-small model https://github.com/ultralytics/yolov5
80
- return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
81
-
82
-
83
- def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
84
- # YOLOv5-medium model https://github.com/ultralytics/yolov5
85
- return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
86
-
87
-
88
- def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
89
- # YOLOv5-large model https://github.com/ultralytics/yolov5
90
- return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
91
-
92
-
93
- def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
94
- # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
95
- return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
96
-
97
-
98
- def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
99
- # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
100
- return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
101
-
102
-
103
- def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
104
- # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
105
- return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
106
-
107
-
108
- def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
109
- # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
110
- return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
111
-
112
-
113
- def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
114
- # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
115
- return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
116
-
117
-
118
- def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
119
- # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
120
- return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
121
-
122
-
123
- if __name__ == '__main__':
124
- model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
125
- # model = custom(path='path/to/model.pt') # custom
126
-
127
- # Verify inference
128
- from pathlib import Path
129
-
130
- import numpy as np
131
- from PIL import Image
132
-
133
- from utils.general import cv2
134
-
135
- imgs = [
136
- 'data/images/zidane.jpg', # filename
137
- Path('data/images/zidane.jpg'), # Path
138
- 'https://ultralytics.com/images/zidane.jpg', # URI
139
- cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
140
- Image.open('data/images/bus.jpg'), # PIL
141
- np.zeros((320, 640, 3))] # numpy
142
-
143
- results = model(imgs, size=320) # batched inference
144
- results.print()
145
- results.save()