import gradio as gr import torch from io import BytesIO import cv2 import gradio as gr import numpy as np import requests from PIL import Image try: import python3-dev import super-gradients except ImportError: os.system("pip install -e .") import python3-dev import super-gradients from super_gradients.common.object_names import Models from super_gradients.training import models from super_gradients.training.utils.visualization.detection import draw_bbox # Initialize your pose estimation model yolo_nas_pose = models.get("best.pt", num_classes=1, checkpoint_path="./best.pt") def process_and_predict(url=None, image=None, confidence=0.5, iou=0.5): # If a URL is provided, use it directly for prediction if url is not None and url.strip() != "": response = requests.get(url) image = Image.open(BytesIO(response.content)) image = np.array(image) result = yolo_nas_pose.predict(image, conf=confidence,iou=iou) # If a file is uploaded, read it, convert it to a numpy array and use it for prediction elif image is not None: result = yolo_nas_pose.predict(image, conf=confidence,iou=iou) else: return None # If no input is provided, return None # Extract prediction data image_prediction = result._images_prediction_lst[0] pose_data = image_prediction.prediction # Visualize the prediction output_image = PoseVisualization.draw_poses( image=image_prediction.image, poses=pose_data.poses, boxes=pose_data.bboxes_xyxy, scores=pose_data.scores, is_crowd=None, edge_links=pose_data.edge_links, edge_colors=pose_data.edge_colors, keypoint_colors=pose_data.keypoint_colors, joint_thickness=2, box_thickness=2, keypoint_radius=5 ) blank_image = np.zeros_like(image_prediction.image) skeleton_image = PoseVisualization.draw_poses( image=blank_image, poses=pose_data.poses, boxes=pose_data.bboxes_xyxy, scores=pose_data.scores, is_crowd=None, edge_links=pose_data.edge_links, edge_colors=pose_data.edge_colors, keypoint_colors=pose_data.keypoint_colors, joint_thickness=2, box_thickness=2, keypoint_radius=5 ) return output_image, skeleton_image def greet(name): return "Hello " + name + "!!" demo = gr.Interface(fn=greet, inputs="text", outputs="text") from urllib.request import urlretrieve # get image examples from github urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-1450-_jpg.jpg?raw=true", "clip2_-1450-_jpg.jpg") # make sure to use "copy image address when copying image from Github" urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-539-_jpg.jpg?raw=true", "clip2_-539-_jpg.jpg") examples = [ # need to manually delete cache everytime new examples are added ["clip2_-1450-_jpg.jpg"], ["clip2_-539-_jpg.jpg"]] # define app features and run title = "SpecLab Demo" description = "
Gradio demo for an ASPP model architecture trained on the SpecLab dataset. To use it, simply add your image, or click one of the examples to load them. Since this demo is run on CPU only, please allow additional time for processing.
" article = "" css = "#0 {object-fit: contain;} #1 {object-fit: contain;}" demo = gr.Interface(fn=speclab, title=title, description=description, article=article, inputs=gr.Image(elem_id=0, show_label=False), outputs=gr.Image(elem_id=1, show_label=False), css=css, examples=examples, cache_examples=True, allow_flagging='never') demo.launch()