Spaces:
Running
Running
Create app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
# Install required packages
|
2 |
-
!pip install huggingface_hub
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
|
|
|
8 |
import numpy as np
|
9 |
import logging
|
10 |
from datetime import datetime
|
@@ -145,34 +143,35 @@ class UltimateCommunicationAnalyzer:
|
|
145 |
# Try to load from HuggingFace first, then local file
|
146 |
try:
|
147 |
logger.info("Attempting to load from HuggingFace: SamanthaStorm/intentanalyzer...")
|
148 |
-
# Download the pytorch_model.bin from HuggingFace
|
149 |
-
from huggingface_hub import hf_hub_download
|
150 |
-
|
151 |
-
model_path = hf_hub_download(
|
152 |
-
repo_id="SamanthaStorm/intentanalyzer",
|
153 |
-
filename="pytorch_model.bin",
|
154 |
-
cache_dir="./models"
|
155 |
-
)
|
156 |
|
157 |
-
#
|
158 |
-
state_dict = torch.load(model_path, map_location='cpu')
|
159 |
-
self.intent_model.load_state_dict(state_dict)
|
160 |
-
logger.info("β
Intent detection model loaded from HuggingFace!")
|
161 |
-
|
162 |
-
except Exception as hf_error:
|
163 |
-
logger.warning(f"HuggingFace download failed: {hf_error}")
|
164 |
-
logger.info("Trying local file...")
|
165 |
-
|
166 |
-
# Fallback to local file
|
167 |
try:
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
except Exception as e:
|
178 |
logger.error(f"β Error loading intent model: {e}")
|
@@ -201,37 +200,68 @@ class UltimateCommunicationAnalyzer:
|
|
201 |
return 'no_fallacy', 0.0
|
202 |
|
203 |
def predict_intent(self, text):
|
204 |
-
"""Predict intent using the multi-label model"""
|
205 |
try:
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
except Exception as e:
|
233 |
logger.error(f"Intent prediction failed: {e}")
|
234 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
def get_combined_analysis(self, fallacy_type, fallacy_confidence, detected_intents):
|
237 |
"""Generate combined analysis and insights"""
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
import numpy as np
|
7 |
import logging
|
8 |
from datetime import datetime
|
|
|
143 |
# Try to load from HuggingFace first, then local file
|
144 |
try:
|
145 |
logger.info("Attempting to load from HuggingFace: SamanthaStorm/intentanalyzer...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
# For HuggingFace Spaces, we can access other models directly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
try:
|
149 |
+
# Try to load the model files directly from the repo
|
150 |
+
model_path = hf_hub_download(
|
151 |
+
repo_id="SamanthaStorm/intentanalyzer",
|
152 |
+
filename="pytorch_model.bin"
|
153 |
+
)
|
154 |
+
|
155 |
+
# Load the state dict
|
156 |
+
state_dict = torch.load(model_path, map_location='cpu')
|
157 |
+
self.intent_model.load_state_dict(state_dict)
|
158 |
+
logger.info("β
Intent detection model loaded from HuggingFace!")
|
159 |
+
|
160 |
+
except Exception as download_error:
|
161 |
+
logger.warning(f"Direct download failed: {download_error}")
|
162 |
+
|
163 |
+
# Alternative: Try loading with a simpler approach
|
164 |
+
logger.info("Trying alternative loading method...")
|
165 |
+
|
166 |
+
# Create a dummy model with reasonable predictions for demo
|
167 |
+
logger.warning("Using fallback intent detection - limited functionality")
|
168 |
+
# We'll create a simple rule-based backup
|
169 |
+
self.intent_model = None # Will trigger fallback mode
|
170 |
+
|
171 |
+
except Exception as hf_error:
|
172 |
+
logger.warning(f"HuggingFace loading failed: {hf_error}")
|
173 |
+
logger.info("Using fallback intent detection...")
|
174 |
+
self.intent_model = None # Will trigger fallback mode
|
175 |
|
176 |
except Exception as e:
|
177 |
logger.error(f"β Error loading intent model: {e}")
|
|
|
200 |
return 'no_fallacy', 0.0
|
201 |
|
202 |
def predict_intent(self, text):
|
203 |
+
"""Predict intent using the multi-label model or fallback"""
|
204 |
try:
|
205 |
+
# Check if we have the full model loaded
|
206 |
+
if self.intent_model is not None:
|
207 |
+
self.intent_model.eval()
|
208 |
+
|
209 |
+
inputs = self.intent_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
210 |
+
|
211 |
+
with torch.no_grad():
|
212 |
+
outputs = self.intent_model(inputs['input_ids'], inputs['attention_mask'])
|
213 |
+
probabilities = torch.sigmoid(outputs).numpy()[0]
|
214 |
+
|
215 |
+
# Get predictions above threshold
|
216 |
+
detected_intents = {}
|
217 |
+
for i, category in enumerate(self.intent_categories):
|
218 |
+
prob = probabilities[i]
|
219 |
+
threshold = self.intent_thresholds[category]
|
220 |
+
if prob > threshold:
|
221 |
+
detected_intents[category] = prob
|
222 |
+
|
223 |
+
# If no intents above threshold, use the highest one if it's reasonable
|
224 |
+
if not detected_intents:
|
225 |
+
max_idx = np.argmax(probabilities)
|
226 |
+
max_category = self.intent_categories[max_idx]
|
227 |
+
max_prob = probabilities[max_idx]
|
228 |
+
if max_prob > 0.3: # Minimum confidence
|
229 |
+
detected_intents[max_category] = max_prob
|
230 |
+
|
231 |
+
return detected_intents
|
232 |
+
else:
|
233 |
+
# Fallback rule-based intent detection
|
234 |
+
return self.predict_intent_fallback(text)
|
235 |
|
236 |
except Exception as e:
|
237 |
logger.error(f"Intent prediction failed: {e}")
|
238 |
+
return self.predict_intent_fallback(text)
|
239 |
+
|
240 |
+
def predict_intent_fallback(self, text):
|
241 |
+
"""Simple rule-based fallback for intent detection"""
|
242 |
+
text_lower = text.lower()
|
243 |
+
detected_intents = {}
|
244 |
+
|
245 |
+
# Simple pattern matching
|
246 |
+
if any(word in text_lower for word in ['lol', 'triggered', 'snowflake', 'cope', 'seethe']):
|
247 |
+
detected_intents['trolling'] = 0.75
|
248 |
+
|
249 |
+
if any(word in text_lower for word in ['whatever', "don't care", 'not my problem', 'end of discussion']):
|
250 |
+
detected_intents['dismissive'] = 0.70
|
251 |
+
|
252 |
+
if any(word in text_lower for word in ['if you really', 'after everything', "you're making me feel"]):
|
253 |
+
detected_intents['manipulative'] = 0.72
|
254 |
+
|
255 |
+
if text_lower.count('!') > 2 or any(word in text_lower for word in ["can't believe", 'literally shaking']):
|
256 |
+
detected_intents['emotionally_reactive'] = 0.68
|
257 |
+
|
258 |
+
if any(word in text_lower for word in ['understand', 'appreciate', 'thank you', 'let\'s work']):
|
259 |
+
detected_intents['constructive'] = 0.80
|
260 |
+
|
261 |
+
if not detected_intents:
|
262 |
+
detected_intents['unclear'] = 0.60
|
263 |
+
|
264 |
+
return detected_intents
|
265 |
|
266 |
def get_combined_analysis(self, fallacy_type, fallacy_confidence, detected_intents):
|
267 |
"""Generate combined analysis and insights"""
|