Spaces:
Running
Running
Create app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
4 |
import numpy as np
|
5 |
import logging
|
6 |
from datetime import datetime
|
|
|
7 |
|
8 |
# Set up logging
|
9 |
logging.basicConfig(
|
@@ -16,49 +17,146 @@ logging.basicConfig(
|
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
-
class
|
20 |
def __init__(self):
|
21 |
-
#
|
22 |
self.fallacy_labels = {
|
23 |
-
'ad_hominem': 'Ad Hominem
|
24 |
-
'strawman': 'Strawman
|
25 |
-
'whataboutism': 'Whataboutism
|
26 |
-
'gaslighting': 'Gaslighting
|
27 |
-
'false_dichotomy': 'False Dichotomy
|
28 |
-
'appeal_to_emotion': 'Appeal to Emotion
|
29 |
-
'darvo': 'DARVO
|
30 |
-
'moving_goalposts': 'Moving Goalposts
|
31 |
-
'cherry_picking': 'Cherry Picking
|
32 |
-
'appeal_to_authority': 'Appeal to Authority
|
33 |
-
'slippery_slope': 'Slippery Slope
|
34 |
-
'motte_and_bailey': 'Motte and Bailey
|
35 |
-
'gish_gallop': 'Gish Gallop
|
36 |
-
'kafkatrapping': 'Kafkatrapping
|
37 |
-
'sealioning': 'Sealioning
|
38 |
-
'no_fallacy': '
|
39 |
}
|
40 |
|
41 |
-
#
|
42 |
self.fallacy_descriptions = {
|
43 |
-
'ad_hominem': "Attacking the person
|
44 |
-
'strawman': "Misrepresenting someone's
|
45 |
-
'whataboutism': "Deflecting
|
46 |
-
'gaslighting': "Making someone question their own
|
47 |
-
'false_dichotomy': "Presenting only two options when more
|
48 |
-
'appeal_to_emotion': "Using
|
49 |
-
'darvo': "
|
50 |
-
'moving_goalposts': "Changing
|
51 |
-
'cherry_picking': "Selecting only
|
52 |
-
'appeal_to_authority': "
|
53 |
-
'slippery_slope': "
|
54 |
-
'motte_and_bailey': "Switching between
|
55 |
-
'gish_gallop': "Overwhelming
|
56 |
-
'kafkatrapping': "
|
57 |
-
'sealioning': "
|
58 |
-
'no_fallacy': "
|
59 |
}
|
60 |
|
61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
self.model = None
|
63 |
self.tokenizer = None
|
64 |
self.use_model = False
|
@@ -68,161 +166,50 @@ class FallacyFinder:
|
|
68 |
self.tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/fallacyfinder")
|
69 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
70 |
"SamanthaStorm/fallacyfinder",
|
71 |
-
num_labels=16
|
72 |
)
|
73 |
self.use_model = True
|
74 |
logger.info("β
Model loaded successfully!")
|
75 |
except Exception as e:
|
76 |
logger.error(f"β Error loading model: {e}")
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
detected_patterns.append(f"strawman: {matched_strawman}")
|
104 |
-
logger.info(f"RULE-BASED: Strawman detected - patterns: {matched_strawman}")
|
105 |
-
return 'strawman', 0.82, detected_patterns
|
106 |
-
|
107 |
-
# Whataboutism patterns
|
108 |
-
whataboutism_patterns = [
|
109 |
-
'what about', 'but what about', 'how about when', 'what about when you',
|
110 |
-
'but you', 'but when you'
|
111 |
-
]
|
112 |
-
matched_whataboutism = [p for p in whataboutism_patterns if p in text_lower]
|
113 |
-
if matched_whataboutism:
|
114 |
-
detected_patterns.append(f"whataboutism: {matched_whataboutism}")
|
115 |
-
logger.info(f"RULE-BASED: Whataboutism detected - patterns: {matched_whataboutism}")
|
116 |
-
return 'whataboutism', 0.88, detected_patterns
|
117 |
-
|
118 |
-
# Gaslighting patterns
|
119 |
-
gaslighting_patterns = [
|
120 |
-
'that never happened', 'you\'re imagining', 'you\'re being too sensitive',
|
121 |
-
'you\'re overreacting', 'that\'s not what i said', 'you\'re remembering wrong',
|
122 |
-
'you\'re being paranoid', 'you\'re being dramatic'
|
123 |
-
]
|
124 |
-
matched_gaslighting = [p for p in gaslighting_patterns if p in text_lower]
|
125 |
-
if matched_gaslighting:
|
126 |
-
detected_patterns.append(f"gaslighting: {matched_gaslighting}")
|
127 |
-
logger.info(f"RULE-BASED: Gaslighting detected - patterns: {matched_gaslighting}")
|
128 |
-
return 'gaslighting', 0.80, detected_patterns
|
129 |
-
|
130 |
-
# False Dichotomy patterns
|
131 |
-
false_dichotomy_patterns = [
|
132 |
-
'either you\'re', 'either we', 'you\'re either', 'it\'s either',
|
133 |
-
'with us or against us', 'love it or leave it'
|
134 |
-
]
|
135 |
-
matched_false_dichotomy = [p for p in false_dichotomy_patterns if p in text_lower]
|
136 |
-
if matched_false_dichotomy:
|
137 |
-
detected_patterns.append(f"false_dichotomy: {matched_false_dichotomy}")
|
138 |
-
logger.info(f"RULE-BASED: False Dichotomy detected - patterns: {matched_false_dichotomy}")
|
139 |
-
return 'false_dichotomy', 0.78, detected_patterns
|
140 |
-
|
141 |
-
# Appeal to Emotion patterns
|
142 |
-
emotion_patterns = [
|
143 |
-
'think of the children', 'innocent people will', 'if you have any heart',
|
144 |
-
'how can you sleep', 'break the hearts', 'suffer needlessly'
|
145 |
-
]
|
146 |
-
matched_emotion = [p for p in emotion_patterns if p in text_lower]
|
147 |
-
if matched_emotion:
|
148 |
-
detected_patterns.append(f"appeal_to_emotion: {matched_emotion}")
|
149 |
-
logger.info(f"RULE-BASED: Appeal to Emotion detected - patterns: {matched_emotion}")
|
150 |
-
return 'appeal_to_emotion', 0.83, detected_patterns
|
151 |
-
|
152 |
-
# DARVO patterns
|
153 |
-
darvo_patterns = [
|
154 |
-
'i never did that', 'you\'re the one who', 'i\'m the victim here',
|
155 |
-
'you\'re attacking me', 'i\'m innocent', 'you started this'
|
156 |
-
]
|
157 |
-
matched_darvo = [p for p in darvo_patterns if p in text_lower]
|
158 |
-
if matched_darvo and len(matched_darvo) >= 2:
|
159 |
-
detected_patterns.append(f"darvo: {matched_darvo}")
|
160 |
-
logger.info(f"RULE-BASED: DARVO detected - patterns: {matched_darvo}")
|
161 |
-
return 'darvo', 0.75, detected_patterns
|
162 |
-
|
163 |
-
# Moving Goalposts patterns
|
164 |
-
goalpost_patterns = [
|
165 |
-
'that doesn\'t count because', 'you need better sources', 'that\'s not enough evidence',
|
166 |
-
'those statistics don\'t count', 'that\'s different because'
|
167 |
-
]
|
168 |
-
matched_goalpost = [p for p in goalpost_patterns if p in text_lower]
|
169 |
-
if matched_goalpost:
|
170 |
-
detected_patterns.append(f"moving_goalposts: {matched_goalpost}")
|
171 |
-
logger.info(f"RULE-BASED: Moving Goalposts detected - patterns: {matched_goalpost}")
|
172 |
-
return 'moving_goalposts', 0.77, detected_patterns
|
173 |
-
|
174 |
-
# Appeal to Authority patterns
|
175 |
-
authority_patterns = [
|
176 |
-
'my doctor said', 'the expert said', 'the ceo thinks', 'einstein believed',
|
177 |
-
'my professor told me', 'the government says'
|
178 |
-
]
|
179 |
-
matched_authority = [p for p in authority_patterns if p in text_lower]
|
180 |
-
if matched_authority:
|
181 |
-
detected_patterns.append(f"appeal_to_authority: {matched_authority}")
|
182 |
-
logger.info(f"RULE-BASED: Appeal to Authority detected - patterns: {matched_authority}")
|
183 |
-
return 'appeal_to_authority', 0.72, detected_patterns
|
184 |
-
|
185 |
-
# Slippery Slope patterns
|
186 |
-
slope_patterns = [
|
187 |
-
'if we allow this', 'this will lead to', 'give them an inch',
|
188 |
-
'this is just the beginning', 'where will it end', 'slippery slope'
|
189 |
-
]
|
190 |
-
matched_slope = [p for p in slope_patterns if p in text_lower]
|
191 |
-
if matched_slope:
|
192 |
-
detected_patterns.append(f"slippery_slope: {matched_slope}")
|
193 |
-
logger.info(f"RULE-BASED: Slippery Slope detected - patterns: {matched_slope}")
|
194 |
-
return 'slippery_slope', 0.74, detected_patterns
|
195 |
-
|
196 |
-
# Check for healthy communication (No Fallacy)
|
197 |
-
healthy_patterns = [
|
198 |
-
'i understand your perspective', 'i disagree because', 'based on the evidence',
|
199 |
-
'i appreciate your input', 'let\'s examine', 'i think we need more information',
|
200 |
-
'i see the merit', 'thank you for sharing'
|
201 |
-
]
|
202 |
-
matched_healthy = [p for p in healthy_patterns if p in text_lower]
|
203 |
-
if matched_healthy:
|
204 |
-
detected_patterns.append(f"no_fallacy: {matched_healthy}")
|
205 |
-
logger.info(f"RULE-BASED: Healthy communication detected - patterns: {matched_healthy}")
|
206 |
-
return 'no_fallacy', 0.90, detected_patterns
|
207 |
-
|
208 |
-
# Default to no fallacy if nothing detected
|
209 |
-
logger.info("RULE-BASED: No specific patterns detected, defaulting to no_fallacy")
|
210 |
-
return 'no_fallacy', 0.60, ["no_specific_patterns"]
|
211 |
-
|
212 |
def predict_fallacy(self, text):
|
213 |
-
"""Main prediction function
|
214 |
if not text.strip():
|
215 |
-
return None, 0,
|
216 |
|
217 |
logger.info(f"ANALYZING: '{text[:100]}{'...' if len(text) > 100 else ''}'")
|
218 |
|
219 |
if not self.use_model or self.model is None:
|
220 |
-
logger.error("
|
221 |
-
return None, 0,
|
222 |
|
223 |
-
# Use trained model
|
224 |
try:
|
225 |
-
logger.info("Using trained model for prediction")
|
226 |
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
227 |
|
228 |
with torch.no_grad():
|
@@ -231,236 +218,309 @@ class FallacyFinder:
|
|
231 |
predicted_class_id = predictions.argmax().item()
|
232 |
confidence = predictions.max().item()
|
233 |
|
234 |
-
#
|
235 |
label_keys = list(self.fallacy_labels.keys())
|
236 |
-
|
237 |
-
|
238 |
-
score = predictions[0][i].item()
|
239 |
-
prediction_scores[label] = f"{score:.3f}"
|
240 |
|
241 |
-
|
|
|
|
|
|
|
242 |
|
243 |
-
# Map to fallacy label
|
244 |
predicted_label = label_keys[predicted_class_id]
|
245 |
-
logger.info(f"MODEL RESULT: {predicted_label} (confidence: {confidence:.3f})")
|
246 |
-
|
247 |
-
patterns_detected = [f"model_prediction: top_3: {sorted(prediction_scores.items(), key=lambda x: float(x[1]), reverse=True)[:3]}"]
|
248 |
|
249 |
-
|
250 |
-
description = self.fallacy_descriptions[predicted_label]
|
251 |
-
|
252 |
-
logger.info(f"FINAL RESULT: {predicted_label} ({fallacy_name}) - confidence: {confidence}")
|
253 |
|
254 |
-
return predicted_label, confidence,
|
255 |
|
256 |
except Exception as e:
|
257 |
logger.error(f"Model prediction failed: {e}")
|
258 |
-
return None, 0,
|
259 |
-
|
260 |
-
def
|
261 |
-
"""
|
262 |
-
if
|
263 |
-
return "
|
264 |
-
|
265 |
-
predicted_label, confidence, fallacy_name, description, patterns = self.predict_fallacy(message)
|
266 |
|
267 |
-
#
|
268 |
-
|
269 |
|
270 |
-
#
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
elif confidence >= 0.6:
|
275 |
-
confidence_level = "π£ Medium Confidence"
|
276 |
-
confidence_color = "medium"
|
277 |
-
else:
|
278 |
-
confidence_level = "π’ Low Confidence"
|
279 |
-
confidence_color = "low"
|
280 |
|
281 |
-
# Format
|
282 |
if predicted_label == 'no_fallacy':
|
283 |
-
|
|
|
|
|
284 |
else:
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
if patterns and patterns[0].startswith('model_prediction'):
|
289 |
-
# Extract top 3 predictions from debug info
|
290 |
-
try:
|
291 |
-
import ast
|
292 |
-
debug_str = patterns[0].replace('model_prediction: top_3: ', '')
|
293 |
-
top_predictions = ast.literal_eval(debug_str)
|
294 |
-
|
295 |
-
result += f"\n\n**Top Predictions:**"
|
296 |
-
for i, (fallacy, score) in enumerate(top_predictions, 1):
|
297 |
-
fallacy_display = self.fallacy_labels.get(fallacy, fallacy.replace('_', ' ').title())
|
298 |
-
percentage = f"{float(score) * 100:.1f}%"
|
299 |
-
result += f"\n{i}. {fallacy_display}: {percentage}"
|
300 |
-
|
301 |
-
except:
|
302 |
-
# Fallback if parsing fails
|
303 |
-
result += f"\n\n**Debug Info:** Model prediction analysis available in logs"
|
304 |
|
305 |
-
#
|
306 |
-
|
307 |
-
|
308 |
-
# Add examples or tips based on fallacy type
|
309 |
-
if predicted_label == 'ad_hominem':
|
310 |
-
explanation += "\n\n**Better approach:** Focus on the argument itself rather than the person making it."
|
311 |
-
elif predicted_label == 'strawman':
|
312 |
-
explanation += "\n\n**Better approach:** Address the actual argument being made, not a distorted version of it."
|
313 |
-
elif predicted_label == 'whataboutism':
|
314 |
-
explanation += "\n\n**Better approach:** Address the original concern directly before discussing other issues."
|
315 |
-
elif predicted_label == 'gaslighting':
|
316 |
-
explanation += "\n\n**Better approach:** Acknowledge the other person's experience and work toward understanding."
|
317 |
-
elif predicted_label == 'no_fallacy':
|
318 |
-
explanation = "**Great communication!** This message appears to use logical reasoning and respectful language."
|
319 |
-
|
320 |
-
# Log the final user-facing result
|
321 |
-
logger.info(f"USER RESULT: {predicted_label} - {confidence_percent} confidence")
|
322 |
-
logger.info("="*50)
|
323 |
-
|
324 |
-
return result, explanation, confidence_color
|
325 |
|
326 |
-
|
327 |
-
logger.info("Initializing Fallacy Finder...")
|
328 |
-
finder = FallacyFinder()
|
329 |
-
logger.info("Fallacy Finder initialized successfully")
|
330 |
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
.gradio-container {
|
341 |
-
max-width:
|
|
|
342 |
}
|
343 |
-
.high
|
344 |
-
|
|
|
|
|
|
|
345 |
}
|
346 |
-
.medium
|
347 |
-
|
|
|
|
|
|
|
348 |
}
|
349 |
-
.low
|
350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
}
|
352 |
"""
|
353 |
-
) as demo:
|
354 |
-
|
355 |
-
gr.Markdown(
|
356 |
-
"""
|
357 |
-
# π Fallacy Finder
|
358 |
-
|
359 |
-
Analyze messages for logical fallacies and argumentative patterns. Enter any statement, argument, or message to identify potential fallacies and get suggestions for better communication.
|
360 |
-
|
361 |
-
**Detects 15+ types of fallacies** including ad hominem, strawman, whataboutism, gaslighting, and more.
|
362 |
-
"""
|
363 |
-
)
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
|
|
|
|
|
|
373 |
|
374 |
-
|
375 |
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
gr.Markdown(
|
378 |
"""
|
379 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
-
|
382 |
-
*"You're too stupid to understand"*
|
383 |
|
384 |
-
**
|
385 |
-
|
|
|
|
|
|
|
386 |
|
387 |
-
|
388 |
-
*"What about when you did the same thing?"*
|
389 |
|
390 |
-
**
|
391 |
-
|
|
|
|
|
|
|
|
|
392 |
"""
|
393 |
)
|
394 |
-
|
395 |
-
with gr.Row():
|
396 |
-
with gr.Column():
|
397 |
-
result_output = gr.Textbox(
|
398 |
-
label="Analysis Result",
|
399 |
-
lines=6,
|
400 |
-
interactive=False
|
401 |
-
)
|
402 |
-
|
403 |
-
explanation_output = gr.Textbox(
|
404 |
-
label="Explanation & Suggestions",
|
405 |
-
lines=6,
|
406 |
-
interactive=False
|
407 |
-
)
|
408 |
-
|
409 |
-
# Examples section
|
410 |
-
gr.Markdown("## π Try These Examples")
|
411 |
-
|
412 |
-
example_messages = [
|
413 |
-
"You're clearly too young and inexperienced to have a valid opinion on this topic",
|
414 |
-
"So you're saying we should just let criminals run free and destroy society?",
|
415 |
-
"What about when you lied to me last year? Why should I trust you now?",
|
416 |
-
"That never happened, you're just being overly emotional and dramatic about nothing",
|
417 |
-
"Either you support the troops or you hate America - there's no middle ground",
|
418 |
-
"I understand your concerns, but based on the research I've seen, I think we should consider other options"
|
419 |
-
]
|
420 |
-
|
421 |
-
examples = gr.Examples(
|
422 |
-
examples=[[msg] for msg in example_messages],
|
423 |
-
inputs=[message_input],
|
424 |
-
outputs=[result_output, explanation_output],
|
425 |
-
fn=analyze_fallacy,
|
426 |
-
cache_examples=False
|
427 |
-
)
|
428 |
-
|
429 |
-
# Information section
|
430 |
-
gr.Markdown(
|
431 |
-
"""
|
432 |
-
### π― How It Works
|
433 |
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
|
|
|
|
|
|
458 |
|
459 |
# Launch the app
|
460 |
if __name__ == "__main__":
|
461 |
-
logger.info("Starting Gradio interface...")
|
|
|
462 |
demo.launch(
|
463 |
share=True,
|
464 |
server_name="0.0.0.0",
|
465 |
-
server_port=7860
|
|
|
466 |
)
|
|
|
4 |
import numpy as np
|
5 |
import logging
|
6 |
from datetime import datetime
|
7 |
+
import re
|
8 |
|
9 |
# Set up logging
|
10 |
logging.basicConfig(
|
|
|
17 |
)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
+
class EnhancedFallacyFinder:
|
21 |
def __init__(self):
|
22 |
+
# Enhanced fallacy labels with better descriptions
|
23 |
self.fallacy_labels = {
|
24 |
+
'ad_hominem': 'Ad Hominem',
|
25 |
+
'strawman': 'Strawman',
|
26 |
+
'whataboutism': 'Whataboutism',
|
27 |
+
'gaslighting': 'Gaslighting',
|
28 |
+
'false_dichotomy': 'False Dichotomy',
|
29 |
+
'appeal_to_emotion': 'Appeal to Emotion',
|
30 |
+
'darvo': 'DARVO',
|
31 |
+
'moving_goalposts': 'Moving Goalposts',
|
32 |
+
'cherry_picking': 'Cherry Picking',
|
33 |
+
'appeal_to_authority': 'Appeal to Authority',
|
34 |
+
'slippery_slope': 'Slippery Slope',
|
35 |
+
'motte_and_bailey': 'Motte and Bailey',
|
36 |
+
'gish_gallop': 'Gish Gallop',
|
37 |
+
'kafkatrapping': 'Kafkatrapping',
|
38 |
+
'sealioning': 'Sealioning',
|
39 |
+
'no_fallacy': 'Clean Communication'
|
40 |
}
|
41 |
|
42 |
+
# Simplified, actionable descriptions
|
43 |
self.fallacy_descriptions = {
|
44 |
+
'ad_hominem': "Attacking the person instead of their argument",
|
45 |
+
'strawman': "Misrepresenting someone's position to attack it easier",
|
46 |
+
'whataboutism': "Deflecting by pointing to other issues",
|
47 |
+
'gaslighting': "Making someone question their own reality",
|
48 |
+
'false_dichotomy': "Presenting only two options when more exist",
|
49 |
+
'appeal_to_emotion': "Using emotions to manipulate instead of logic",
|
50 |
+
'darvo': "Deny, Attack, and Reverse victim/offender roles",
|
51 |
+
'moving_goalposts': "Changing requirements when original ones are met",
|
52 |
+
'cherry_picking': "Selecting only supporting evidence",
|
53 |
+
'appeal_to_authority': "Misusing authority to support weak arguments",
|
54 |
+
'slippery_slope': "Claiming one thing leads to extreme outcomes",
|
55 |
+
'motte_and_bailey': "Switching between strong and weak positions",
|
56 |
+
'gish_gallop': "Overwhelming with many rapid-fire weak arguments",
|
57 |
+
'kafkatrapping': "Where denial of guilt proves guilt",
|
58 |
+
'sealioning': "Persistent bad-faith requests for evidence",
|
59 |
+
'no_fallacy': "Logical, respectful communication"
|
60 |
}
|
61 |
|
62 |
+
# Rewrite suggestions - the most valuable feature
|
63 |
+
self.rewrite_suggestions = {
|
64 |
+
'ad_hominem': {
|
65 |
+
'problem': "Focuses on attacking the person",
|
66 |
+
'better': "Focus on the argument: 'I disagree with your point because...'"
|
67 |
+
},
|
68 |
+
'strawman': {
|
69 |
+
'problem': "Misrepresents the other person's view",
|
70 |
+
'better': "Address their actual position: 'I understand you're saying X, but I think Y because...'"
|
71 |
+
},
|
72 |
+
'whataboutism': {
|
73 |
+
'problem': "Deflects instead of addressing the issue",
|
74 |
+
'better': "Address the concern first: 'You're right about X. Here's how we can fix it...'"
|
75 |
+
},
|
76 |
+
'gaslighting': {
|
77 |
+
'problem': "Makes the other person question reality",
|
78 |
+
'better': "Acknowledge their experience: 'I remember it differently, let's figure out what happened...'"
|
79 |
+
},
|
80 |
+
'false_dichotomy': {
|
81 |
+
'problem': "Forces an either/or choice",
|
82 |
+
'better': "Present more options: 'There are several ways we could approach this...'"
|
83 |
+
},
|
84 |
+
'appeal_to_emotion': {
|
85 |
+
'problem': "Uses emotions to manipulate",
|
86 |
+
'better': "Use facts and logic: 'The evidence shows that...'"
|
87 |
+
},
|
88 |
+
'darvo': {
|
89 |
+
'problem': "Reverses victim and offender",
|
90 |
+
'better': "Take responsibility: 'I understand your concern. Let me address it...'"
|
91 |
+
},
|
92 |
+
'moving_goalposts': {
|
93 |
+
'problem': "Changes requirements unfairly",
|
94 |
+
'better': "Be consistent: 'Here's what I need to be convinced...'"
|
95 |
+
},
|
96 |
+
'cherry_picking': {
|
97 |
+
'problem': "Ignores contradictory evidence",
|
98 |
+
'better': "Consider all evidence: 'While some data shows X, other studies show Y...'"
|
99 |
+
},
|
100 |
+
'appeal_to_authority': {
|
101 |
+
'problem': "Relies on inappropriate authority",
|
102 |
+
'better': "Use relevant expertise: 'According to experts in this specific field...'"
|
103 |
+
},
|
104 |
+
'slippery_slope': {
|
105 |
+
'problem': "Assumes extreme consequences",
|
106 |
+
'better': "Focus on immediate effects: 'This specific change would result in...'"
|
107 |
+
},
|
108 |
+
'motte_and_bailey': {
|
109 |
+
'problem': "Switches between positions",
|
110 |
+
'better': "Be consistent: 'My position is X, and here's why...'"
|
111 |
+
},
|
112 |
+
'gish_gallop': {
|
113 |
+
'problem': "Overwhelms with too many points",
|
114 |
+
'better': "Focus on key issues: 'The main concern is X because...'"
|
115 |
+
},
|
116 |
+
'kafkatrapping': {
|
117 |
+
'problem': "Makes denial proof of guilt",
|
118 |
+
'better': "Allow for honest denial: 'Let's examine the evidence together...'"
|
119 |
+
},
|
120 |
+
'sealioning': {
|
121 |
+
'problem': "Persistently demands evidence in bad faith",
|
122 |
+
'better': "Ask genuinely: 'I'd appreciate learning more about your perspective...'"
|
123 |
+
},
|
124 |
+
'no_fallacy': {
|
125 |
+
'problem': "None detected",
|
126 |
+
'better': "Great communication! Clear, logical, and respectful."
|
127 |
+
}
|
128 |
+
}
|
129 |
+
|
130 |
+
# Categorized examples for better exploration
|
131 |
+
self.example_categories = {
|
132 |
+
"Personal Attacks": [
|
133 |
+
"You're too stupid to understand this basic concept",
|
134 |
+
"What would someone with your background know about this?",
|
135 |
+
"You're clearly too emotional to think rationally about this"
|
136 |
+
],
|
137 |
+
"Deflection & Avoidance": [
|
138 |
+
"What about when you made the same mistake last year?",
|
139 |
+
"But what about all the problems with your solution?",
|
140 |
+
"That never happened, you're imagining things"
|
141 |
+
],
|
142 |
+
"False Choices": [
|
143 |
+
"Either you support this or you hate progress",
|
144 |
+
"You're either with us or against us on this issue",
|
145 |
+
"We either act now or everything will be ruined"
|
146 |
+
],
|
147 |
+
"Manipulation": [
|
148 |
+
"Think of the innocent children who will suffer",
|
149 |
+
"If you really cared about people, you'd support this",
|
150 |
+
"How can you sleep at night knowing this?"
|
151 |
+
],
|
152 |
+
"Healthy Communication": [
|
153 |
+
"I understand your concerns, but here's why I disagree",
|
154 |
+
"Based on the evidence I've seen, I think we should consider this",
|
155 |
+
"I appreciate your perspective and want to discuss this further"
|
156 |
+
]
|
157 |
+
}
|
158 |
+
|
159 |
+
# Load model
|
160 |
self.model = None
|
161 |
self.tokenizer = None
|
162 |
self.use_model = False
|
|
|
166 |
self.tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/fallacyfinder")
|
167 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
168 |
"SamanthaStorm/fallacyfinder",
|
169 |
+
num_labels=16
|
170 |
)
|
171 |
self.use_model = True
|
172 |
logger.info("β
Model loaded successfully!")
|
173 |
except Exception as e:
|
174 |
logger.error(f"β Error loading model: {e}")
|
175 |
+
raise e
|
176 |
+
|
177 |
+
def get_confidence_display(self, confidence):
|
178 |
+
"""Simplified traffic light confidence system"""
|
179 |
+
if confidence >= 0.85:
|
180 |
+
return "π΄ Strong Detection", "high", f"{confidence * 100:.0f}%"
|
181 |
+
elif confidence >= 0.70:
|
182 |
+
return "π‘ Likely Fallacy", "medium", f"{confidence * 100:.0f}%"
|
183 |
+
elif confidence >= 0.55:
|
184 |
+
return "π Possible Issue", "low", f"{confidence * 100:.0f}%"
|
185 |
+
else:
|
186 |
+
return "π’ Looks Clean", "clean", f"{confidence * 100:.0f}%"
|
187 |
+
|
188 |
+
def get_text_guidance(self, text):
|
189 |
+
"""Provide real-time guidance as user types"""
|
190 |
+
if len(text.strip()) == 0:
|
191 |
+
return "π‘ Enter a message to analyze for logical fallacies"
|
192 |
+
elif len(text.strip()) < 10:
|
193 |
+
return "π‘ Try a longer example for better analysis"
|
194 |
+
elif len(text) > 500:
|
195 |
+
return "β οΈ Very long text - consider analyzing in smaller parts"
|
196 |
+
elif len(text) > 200:
|
197 |
+
return "π Good length for comprehensive analysis"
|
198 |
+
else:
|
199 |
+
return "β
Perfect length for analysis"
|
200 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
def predict_fallacy(self, text):
|
202 |
+
"""Main prediction function"""
|
203 |
if not text.strip():
|
204 |
+
return None, 0, [], {}
|
205 |
|
206 |
logger.info(f"ANALYZING: '{text[:100]}{'...' if len(text) > 100 else ''}'")
|
207 |
|
208 |
if not self.use_model or self.model is None:
|
209 |
+
logger.error("Model not available")
|
210 |
+
return None, 0, [], {}
|
211 |
|
|
|
212 |
try:
|
|
|
213 |
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
214 |
|
215 |
with torch.no_grad():
|
|
|
218 |
predicted_class_id = predictions.argmax().item()
|
219 |
confidence = predictions.max().item()
|
220 |
|
221 |
+
# Get top 3 predictions for transparency
|
222 |
label_keys = list(self.fallacy_labels.keys())
|
223 |
+
top_predictions = []
|
224 |
+
values, indices = torch.topk(predictions[0], 3)
|
|
|
|
|
225 |
|
226 |
+
for i in range(3):
|
227 |
+
label = label_keys[indices[i].item()]
|
228 |
+
score = values[i].item()
|
229 |
+
top_predictions.append((label, score))
|
230 |
|
|
|
231 |
predicted_label = label_keys[predicted_class_id]
|
|
|
|
|
|
|
232 |
|
233 |
+
logger.info(f"MODEL RESULT: {predicted_label} (confidence: {confidence:.3f})")
|
|
|
|
|
|
|
234 |
|
235 |
+
return predicted_label, confidence, top_predictions, {}
|
236 |
|
237 |
except Exception as e:
|
238 |
logger.error(f"Model prediction failed: {e}")
|
239 |
+
return None, 0, [], {}
|
240 |
+
|
241 |
+
def format_analysis_result(self, predicted_label, confidence, top_predictions):
|
242 |
+
"""Format the main analysis result with better visual design"""
|
243 |
+
if predicted_label is None:
|
244 |
+
return "β Analysis failed. Please try again.", "", ""
|
|
|
|
|
245 |
|
246 |
+
# Get confidence display
|
247 |
+
conf_display, conf_level, conf_percent = self.get_confidence_display(confidence)
|
248 |
|
249 |
+
# Get fallacy info
|
250 |
+
fallacy_name = self.fallacy_labels[predicted_label]
|
251 |
+
description = self.fallacy_descriptions[predicted_label]
|
252 |
+
suggestion = self.rewrite_suggestions[predicted_label]
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
+
# Format main result
|
255 |
if predicted_label == 'no_fallacy':
|
256 |
+
icon = "β
"
|
257 |
+
main_result = f"{icon} **{fallacy_name}**"
|
258 |
+
result_color = "success"
|
259 |
else:
|
260 |
+
icon = "β οΈ"
|
261 |
+
main_result = f"{icon} **{fallacy_name} Detected**"
|
262 |
+
result_color = "warning"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
# Build result string
|
265 |
+
result = f"""
|
266 |
+
{main_result}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
**Confidence:** {conf_display} ({conf_percent})
|
|
|
|
|
|
|
269 |
|
270 |
+
**What this means:** {description}
|
271 |
+
"""
|
272 |
+
|
273 |
+
# Add top predictions for transparency
|
274 |
+
if len(top_predictions) >= 2:
|
275 |
+
result += f"\n**Other possibilities:**"
|
276 |
+
for i, (label, score) in enumerate(top_predictions[1:3], 2):
|
277 |
+
fallacy_display = self.fallacy_labels[label]
|
278 |
+
percentage = f"{score * 100:.0f}%"
|
279 |
+
result += f"\n{i}. {fallacy_display}: {percentage}"
|
280 |
+
|
281 |
+
# Format suggestions
|
282 |
+
if predicted_label != 'no_fallacy':
|
283 |
+
suggestion_text = f"""
|
284 |
+
**π‘ How to improve:**
|
285 |
|
286 |
+
**The problem:** {suggestion['problem']}
|
287 |
+
|
288 |
+
**Better approach:** {suggestion['better']}
|
289 |
+
"""
|
290 |
+
else:
|
291 |
+
suggestion_text = """
|
292 |
+
**π Excellent communication!**
|
293 |
+
|
294 |
+
This message uses logical reasoning and respectful language. Keep it up!
|
295 |
+
|
296 |
+
**What makes this good:**
|
297 |
+
β’ Addresses the topic directly
|
298 |
+
β’ Uses respectful language
|
299 |
+
β’ Focuses on facts and reasoning
|
300 |
+
β’ Acknowledges other perspectives
|
301 |
+
"""
|
302 |
+
|
303 |
+
return result, suggestion_text, conf_level
|
304 |
+
|
305 |
+
def create_enhanced_interface():
|
306 |
+
"""Create the enhanced Gradio interface"""
|
307 |
+
|
308 |
+
# Initialize the finder
|
309 |
+
logger.info("Initializing Enhanced Fallacy Finder...")
|
310 |
+
finder = EnhancedFallacyFinder()
|
311 |
+
logger.info("Enhanced Fallacy Finder initialized successfully")
|
312 |
+
|
313 |
+
# Analysis function
|
314 |
+
def analyze_message(message):
|
315 |
+
"""Main analysis function called by interface"""
|
316 |
+
if not message.strip():
|
317 |
+
return "Please enter a message to analyze.", "", "clean"
|
318 |
+
|
319 |
+
predicted_label, confidence, top_predictions, _ = finder.predict_fallacy(message)
|
320 |
+
result, suggestion, conf_level = finder.format_analysis_result(predicted_label, confidence, top_predictions)
|
321 |
+
|
322 |
+
logger.info(f"USER RESULT: {predicted_label} - {confidence*100:.0f}% confidence")
|
323 |
+
return result, suggestion, conf_level
|
324 |
+
|
325 |
+
# Get guidance function
|
326 |
+
def get_guidance(text):
|
327 |
+
return finder.get_text_guidance(text)
|
328 |
+
|
329 |
+
# Custom CSS for better visual design
|
330 |
+
custom_css = """
|
331 |
.gradio-container {
|
332 |
+
max-width: 1000px !important;
|
333 |
+
margin: auto;
|
334 |
}
|
335 |
+
.high {
|
336 |
+
background: linear-gradient(90deg, #fee2e2, #fef2f2);
|
337 |
+
border-left: 4px solid #dc2626;
|
338 |
+
padding: 1rem;
|
339 |
+
border-radius: 8px;
|
340 |
}
|
341 |
+
.medium {
|
342 |
+
background: linear-gradient(90deg, #fef3c7, #fffbeb);
|
343 |
+
border-left: 4px solid #d97706;
|
344 |
+
padding: 1rem;
|
345 |
+
border-radius: 8px;
|
346 |
}
|
347 |
+
.low {
|
348 |
+
background: linear-gradient(90deg, #ddd6fe, #f3f4f6);
|
349 |
+
border-left: 4px solid #7c3aed;
|
350 |
+
padding: 1rem;
|
351 |
+
border-radius: 8px;
|
352 |
+
}
|
353 |
+
.clean {
|
354 |
+
background: linear-gradient(90deg, #dcfce7, #f0fdf4);
|
355 |
+
border-left: 4px solid #16a34a;
|
356 |
+
padding: 1rem;
|
357 |
+
border-radius: 8px;
|
358 |
+
}
|
359 |
+
.examples-grid {
|
360 |
+
display: grid;
|
361 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
362 |
+
gap: 1rem;
|
363 |
+
margin: 1rem 0;
|
364 |
+
}
|
365 |
+
.category-header {
|
366 |
+
font-weight: bold;
|
367 |
+
color: #374151;
|
368 |
+
margin-bottom: 0.5rem;
|
369 |
}
|
370 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
+
# Create the interface
|
373 |
+
with gr.Blocks(
|
374 |
+
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo"),
|
375 |
+
title="Enhanced Fallacy Finder",
|
376 |
+
css=custom_css
|
377 |
+
) as demo:
|
378 |
+
|
379 |
+
# Header
|
380 |
+
gr.Markdown(
|
381 |
+
"""
|
382 |
+
# π Fallacy Finder Pro
|
383 |
|
384 |
+
**Advanced AI-powered logical fallacy detection** - Analyze any message for argumentative fallacies and get specific suggestions for better communication.
|
385 |
|
386 |
+
β¨ **Enhanced with**: Real-time guidance β’ Rewrite suggestions β’ Confidence levels β’ Categorized examples
|
387 |
+
"""
|
388 |
+
)
|
389 |
+
|
390 |
+
# Main interface
|
391 |
+
with gr.Row():
|
392 |
+
with gr.Column(scale=3):
|
393 |
+
# Input section
|
394 |
+
message_input = gr.Textbox(
|
395 |
+
label="π¬ Enter your message",
|
396 |
+
placeholder="e.g., 'You're just saying that because you're too young to understand politics'",
|
397 |
+
lines=4,
|
398 |
+
info="Paste any statement, argument, or message to check for logical fallacies"
|
399 |
+
)
|
400 |
+
|
401 |
+
# Real-time guidance
|
402 |
+
guidance_output = gr.Textbox(
|
403 |
+
label="π‘ Guidance",
|
404 |
+
interactive=False,
|
405 |
+
max_lines=1
|
406 |
+
)
|
407 |
+
|
408 |
+
# Action buttons
|
409 |
+
with gr.Row():
|
410 |
+
analyze_btn = gr.Button("π Analyze Message", variant="primary", size="lg")
|
411 |
+
clear_btn = gr.Button("π Clear", variant="secondary")
|
412 |
+
|
413 |
+
with gr.Column(scale=2):
|
414 |
+
# Quick stats or tips
|
415 |
+
gr.Markdown(
|
416 |
+
"""
|
417 |
+
### π― What We Detect
|
418 |
+
|
419 |
+
**Personal Attacks** β’ **Strawman Arguments** β’ **Whataboutism** β’ **Gaslighting** β’ **False Choices** β’ **Emotional Manipulation** β’ **And 10+ more...**
|
420 |
+
|
421 |
+
### π¦ Confidence Levels
|
422 |
+
π΄ **Strong Detection** (85%+)
|
423 |
+
π‘ **Likely Fallacy** (70%+)
|
424 |
+
π **Possible Issue** (55%+)
|
425 |
+
π’ **Looks Clean** (<55%)
|
426 |
+
"""
|
427 |
+
)
|
428 |
+
|
429 |
+
# Results section
|
430 |
+
with gr.Row():
|
431 |
+
with gr.Column():
|
432 |
+
result_output = gr.Textbox(
|
433 |
+
label="π Analysis Result",
|
434 |
+
lines=6,
|
435 |
+
interactive=False
|
436 |
+
)
|
437 |
+
|
438 |
+
suggestion_output = gr.Textbox(
|
439 |
+
label="π‘ Suggestions & Improvements",
|
440 |
+
lines=6,
|
441 |
+
interactive=False
|
442 |
+
)
|
443 |
+
|
444 |
+
# Enhanced examples section
|
445 |
+
gr.Markdown("## π Try These Examples")
|
446 |
+
|
447 |
+
# Create example buttons for each category
|
448 |
+
for category, examples in finder.example_categories.items():
|
449 |
+
with gr.Accordion(f"{category}", open=False):
|
450 |
+
for example in examples:
|
451 |
+
example_btn = gr.Button(f"π {example[:60]}{'...' if len(example) > 60 else ''}",
|
452 |
+
variant="secondary", size="sm")
|
453 |
+
example_btn.click(
|
454 |
+
lambda x=example: x,
|
455 |
+
outputs=message_input
|
456 |
+
)
|
457 |
+
|
458 |
+
# Information section
|
459 |
+
with gr.Accordion("π Learn More", open=False):
|
460 |
gr.Markdown(
|
461 |
"""
|
462 |
+
### How This Works
|
463 |
+
|
464 |
+
Our AI model analyzes text patterns to identify logical fallacies that can harm productive communication. It's trained on thousands of examples to recognize:
|
465 |
+
|
466 |
+
- **Argumentative fallacies** that weaken reasoning
|
467 |
+
- **Manipulation tactics** that avoid real discussion
|
468 |
+
- **Respectful communication** patterns to encourage
|
469 |
|
470 |
+
### Tips for Better Arguments
|
|
|
471 |
|
472 |
+
β
**Address the argument, not the person**
|
473 |
+
β
**Represent opposing views accurately**
|
474 |
+
β
**Use evidence and logical reasoning**
|
475 |
+
β
**Stay focused on the main issue**
|
476 |
+
β
**Acknowledge valid concerns**
|
477 |
|
478 |
+
### About Confidence Scores
|
|
|
479 |
|
480 |
+
- **High confidence** = Clear fallacy pattern detected
|
481 |
+
- **Medium confidence** = Likely problematic, worth reviewing
|
482 |
+
- **Low confidence** = Possible issue, but context matters
|
483 |
+
- **Clean** = No concerning patterns found
|
484 |
+
|
485 |
+
*Remember: Context always matters in human communication!*
|
486 |
"""
|
487 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
+
# Connect functions
|
490 |
+
message_input.change(
|
491 |
+
fn=get_guidance,
|
492 |
+
inputs=[message_input],
|
493 |
+
outputs=[guidance_output]
|
494 |
+
)
|
495 |
+
|
496 |
+
analyze_btn.click(
|
497 |
+
fn=analyze_message,
|
498 |
+
inputs=[message_input],
|
499 |
+
outputs=[result_output, suggestion_output]
|
500 |
+
)
|
501 |
+
|
502 |
+
clear_btn.click(
|
503 |
+
fn=lambda: ("", "", "", ""),
|
504 |
+
outputs=[message_input, result_output, suggestion_output, guidance_output]
|
505 |
+
)
|
506 |
+
|
507 |
+
# Footer
|
508 |
+
gr.Markdown(
|
509 |
+
"""
|
510 |
+
---
|
511 |
+
**Fallacy Finder Pro** β’ Built with β€οΈ for better communication β’ [Learn about logical fallacies](https://en.wikipedia.org/wiki/List_of_fallacies)
|
512 |
+
"""
|
513 |
+
)
|
514 |
+
|
515 |
+
return demo
|
516 |
|
517 |
# Launch the app
|
518 |
if __name__ == "__main__":
|
519 |
+
logger.info("Starting Enhanced Gradio interface...")
|
520 |
+
demo = create_enhanced_interface()
|
521 |
demo.launch(
|
522 |
share=True,
|
523 |
server_name="0.0.0.0",
|
524 |
+
server_port=7860,
|
525 |
+
show_error=True
|
526 |
)
|