Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
CHANGED
@@ -1,524 +1,357 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
|
|
3 |
import numpy as np
|
4 |
-
import os
|
5 |
-
import json
|
6 |
-
import logging
|
7 |
-
import traceback
|
8 |
from datetime import datetime
|
9 |
-
import
|
10 |
-
import
|
11 |
-
from models import ModelManager
|
12 |
-
from analyzer import MessageAnalyzer
|
13 |
-
from utils import (
|
14 |
-
parse_chat_data, generate_timeline_chart, generate_pattern_frequency_chart,
|
15 |
-
generate_sender_comparison_chart, generate_time_of_day_heatmap
|
16 |
-
)
|
17 |
-
|
18 |
-
# Set up logging
|
19 |
-
logging.basicConfig(level=logging.INFO)
|
20 |
-
logger = logging.getLogger(__name__)
|
21 |
-
|
22 |
-
# Initialize models
|
23 |
-
model_manager = ModelManager()
|
24 |
-
model_manager.load_models()
|
25 |
-
|
26 |
-
# Initialize analyzer
|
27 |
-
analyzer = MessageAnalyzer(model_manager)
|
28 |
-
|
29 |
-
def analyze_file(file_path):
|
30 |
-
"""Analyze uploaded chat file"""
|
31 |
-
try:
|
32 |
-
# Parse chat data
|
33 |
-
df = parse_chat_data(file_path)
|
34 |
-
|
35 |
-
# Analyze chat history
|
36 |
-
results_df, summary = analyzer.analyze_chat_history(df)
|
37 |
-
|
38 |
-
return results_df, summary
|
39 |
-
except Exception as e:
|
40 |
-
logger.error(f"Error analyzing file: {e}")
|
41 |
-
logger.error(traceback.format_exc())
|
42 |
-
return None, {"error": str(e)}
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
if not message.strip():
|
48 |
-
return {
|
49 |
-
"abuse_score": 0,
|
50 |
-
"detected_patterns": [],
|
51 |
-
"sentiment": "neutral",
|
52 |
-
"emotional_tone": "neutral",
|
53 |
-
"boundary_assessment": {"assessment": "neutral"},
|
54 |
-
"risk_level": "Low"
|
55 |
-
}
|
56 |
-
|
57 |
-
# Analyze message
|
58 |
-
analysis = analyzer.analyze_message(message)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
"
|
66 |
-
"abuse_score": 0,
|
67 |
-
"detected_patterns": [],
|
68 |
-
"sentiment": "error",
|
69 |
-
"emotional_tone": "error",
|
70 |
-
"boundary_assessment": {"assessment": "error"},
|
71 |
-
"risk_level": "Unknown"
|
72 |
-
}
|
73 |
-
|
74 |
-
def get_risk_color(risk_level):
|
75 |
-
"""Get color for risk level"""
|
76 |
-
colors = {
|
77 |
-
"Critical": "#ef4444",
|
78 |
-
"High": "#f97316",
|
79 |
-
"Moderate": "#f59e0b",
|
80 |
-
"Low": "#10b981",
|
81 |
-
"Unknown": "#6b7280"
|
82 |
-
}
|
83 |
-
return colors.get(risk_level, "#6b7280")
|
84 |
-
|
85 |
-
def format_analysis_results(analysis):
|
86 |
-
"""Format analysis results for display"""
|
87 |
-
try:
|
88 |
-
# Format abuse score
|
89 |
-
abuse_score_html = f"""
|
90 |
-
<div style="margin-bottom: 20px;">
|
91 |
-
<h3 style="color: #1f2937;">Abuse Score: {analysis['abuse_score']:.1f}%</h3>
|
92 |
-
<div style="background: #f0f0f0; height: 20px; width: 100%; border-radius: 10px;">
|
93 |
-
<div style="background: {get_risk_color(analysis['risk_level'])};
|
94 |
-
height: 100%;
|
95 |
-
width: {min(100, max(0, analysis['abuse_score']))}%;
|
96 |
-
border-radius: 10px;">
|
97 |
-
</div>
|
98 |
-
</div>
|
99 |
-
<p style="color: #1f2937;">Risk Level: <strong style="color: #1f2937;">{analysis['risk_level']}</strong></p>
|
100 |
-
</div>
|
101 |
-
"""
|
102 |
-
|
103 |
-
# Format detected patterns
|
104 |
-
patterns_html = "<h3 style='color: #1f2937;'>Detected Patterns</h3>"
|
105 |
-
if analysis['detected_patterns']:
|
106 |
-
patterns_html += "<ul>"
|
107 |
-
for pattern in analysis['detected_patterns']:
|
108 |
-
patterns_html += f"<li style='color: #1f2937;'>{pattern}</li>"
|
109 |
-
patterns_html += "</ul>"
|
110 |
-
else:
|
111 |
-
patterns_html += "<p style='color: #1f2937;'>No concerning patterns detected.</p>"
|
112 |
-
|
113 |
-
# Format sentiment and emotional tone
|
114 |
-
sentiment_html = f"""
|
115 |
-
<h3 style="color: #1f2937;">Communication Analysis</h3>
|
116 |
-
<p style="color: #1f2937;"><strong style="color: #1f2937;">Sentiment:</strong> {analysis['sentiment']}</p>
|
117 |
-
<p style="color: #1f2937;"><strong style="color: #1f2937;">Emotional Tone:</strong> {analysis['emotional_tone']}</p>
|
118 |
-
<p style="color: #1f2937;"><strong style="color: #1f2937;">DARVO Score:</strong> {analysis['darvo_score']:.3f}</p>
|
119 |
-
"""
|
120 |
-
|
121 |
-
# Format boundary assessment
|
122 |
-
boundary_html = f"""
|
123 |
-
<h3 style="color: #1f2937;">Boundary Health</h3>
|
124 |
-
<p style="color: #1f2937;"><strong style="color: #1f2937;">Assessment:</strong> {analysis['boundary_assessment']['assessment']}</p>
|
125 |
-
<p style="color: #1f2937;"><strong style="color: #1f2937;">Description:</strong> {analysis['boundary_assessment']['description']}</p>
|
126 |
-
"""
|
127 |
-
|
128 |
-
# Combine all sections
|
129 |
-
html = f"""
|
130 |
-
<div style="padding: 20px; border: 1px solid #ddd; border-radius: 10px; background-color: #ffffff;">
|
131 |
-
{abuse_score_html}
|
132 |
-
{patterns_html}
|
133 |
-
{sentiment_html}
|
134 |
-
{boundary_html}
|
135 |
-
</div>
|
136 |
-
"""
|
137 |
-
|
138 |
-
return html
|
139 |
-
except Exception as e:
|
140 |
-
logger.error(f"Error formatting analysis results: {e}")
|
141 |
-
return f"<p style='color: #1f2937;'>Error formatting results: {str(e)}</p>"
|
142 |
-
|
143 |
-
def format_summary_results(summary):
|
144 |
-
"""Format summary results for display"""
|
145 |
-
try:
|
146 |
-
# Format basic info
|
147 |
-
basic_info = f"""
|
148 |
-
<h2 style="color: #1f2937;">Chat Analysis Summary</h2>
|
149 |
-
<p style="color: #1f2937;"><strong style="color: #1f2937;">Messages Analyzed:</strong> {summary['message_count']}</p>
|
150 |
-
<p style="color: #1f2937;"><strong style="color: #1f2937;">Date Range:</strong> {summary['date_range']['start']} to {summary['date_range']['end']}</p>
|
151 |
-
<p style="color: #1f2937;"><strong style="color: #1f2937;">Overall Risk Level:</strong> <span style="color: {get_risk_color(summary['overall_risk_level'])};
|
152 |
-
font-weight: bold;">
|
153 |
-
{summary['overall_risk_level']}</span></p>
|
154 |
-
"""
|
155 |
-
|
156 |
-
# Format sender stats
|
157 |
-
sender_stats = "<h3 style='color: #1f2937;'>Sender Analysis</h3>"
|
158 |
-
if summary['sender_stats']:
|
159 |
-
sender_stats += "<table style='width: 100%; border-collapse: collapse;'>"
|
160 |
-
sender_stats += "<tr><th style='text-align: left; padding: 8px; border-bottom: 1px solid #ddd; color: #1f2937;'>Sender</th>"
|
161 |
-
sender_stats += "<th style='text-align: left; padding: 8px; border-bottom: 1px solid #ddd; color: #1f2937;'>Messages</th>"
|
162 |
-
sender_stats += "<th style='text-align: left; padding: 8px; border-bottom: 1px solid #ddd; color: #1f2937;'>Avg. Abuse Score</th>"
|
163 |
-
sender_stats += "<th style='text-align: left; padding: 8px; border-bottom: 1px solid #ddd; color: #1f2937;'>Common Patterns</th></tr>"
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
sender_stats += f"<tr><td style='padding: 8px; border-bottom: 1px solid #ddd; color: #1f2937;'>{sender}</td>"
|
168 |
-
sender_stats += f"<td style='padding: 8px; border-bottom: 1px solid #ddd; color: #1f2937;'>{stats['message_count']}</td>"
|
169 |
-
sender_stats += f"<td style='padding: 8px; border-bottom: 1px solid #ddd; color: #1f2937;'>{stats['avg_abuse_score']:.1f}%</td>"
|
170 |
-
sender_stats += f"<td style='padding: 8px; border-bottom: 1px solid #ddd; color: #1f2937;'>{common_patterns}</td></tr>"
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
sender_stats += "<p style='color: #1f2937;'>No sender statistics available.</p>"
|
175 |
-
|
176 |
-
# Format primary abuser section
|
177 |
-
primary_abuser_html = "<h3 style='color: #1f2937;'>Primary Concern</h3>"
|
178 |
-
if summary['primary_abuser']:
|
179 |
-
primary_abuser_html += f"<p style='color: #1f2937;'>The analysis indicates that <strong style='color: #1f2937;'>{summary['primary_abuser']}</strong> "
|
180 |
-
primary_abuser_html += "shows the highest percentage of concerning communication patterns.</p>"
|
181 |
|
182 |
-
#
|
183 |
-
|
184 |
-
analysis = summary['primary_abuser_analysis']
|
185 |
-
|
186 |
-
# Add pattern section with collapsible details
|
187 |
-
primary_abuser_html += "<div style='margin-top: 20px; border: 1px solid #e5e7eb; border-radius: 8px; padding: 15px; background-color: #f9fafb;'>"
|
188 |
-
primary_abuser_html += "<h4 style='color: #1f2937; margin-top: 0;'>Most Common Patterns</h4>"
|
189 |
-
|
190 |
-
# Get patterns from sender stats
|
191 |
-
if summary['sender_stats'].get(summary['primary_abuser']):
|
192 |
-
abuser_stats = summary['sender_stats'][summary['primary_abuser']]
|
193 |
-
if abuser_stats.get('common_patterns'):
|
194 |
-
primary_abuser_html += "<ul style='color: #1f2937;'>"
|
195 |
-
for pattern, count in abuser_stats['common_patterns'][:5]: # Top 5 patterns
|
196 |
-
primary_abuser_html += f"<li style='color: #1f2937; margin-bottom: 8px;'><strong>{pattern}</strong> ({count} occurrences)</li>"
|
197 |
-
primary_abuser_html += "</ul>"
|
198 |
-
else:
|
199 |
-
primary_abuser_html += "<p style='color: #1f2937;'>No specific patterns detected.</p>"
|
200 |
-
|
201 |
-
# Add emotional tones section
|
202 |
-
primary_abuser_html += "<h4 style='color: #1f2937; margin-top: 20px;'>Emotional Tone Analysis</h4>"
|
203 |
-
if analysis.get('emotional_tones'):
|
204 |
-
primary_abuser_html += "<ul style='color: #1f2937;'>"
|
205 |
-
for tone, count in analysis['emotional_tones']:
|
206 |
-
if tone != "neutral":
|
207 |
-
primary_abuser_html += f"<li style='color: #1f2937;'><strong>{tone}</strong> ({count} messages)</li>"
|
208 |
-
primary_abuser_html += "</ul>"
|
209 |
-
else:
|
210 |
-
primary_abuser_html += "<p style='color: #1f2937;'>No significant emotional tones detected.</p>"
|
211 |
-
|
212 |
-
# Add DARVO score
|
213 |
-
darvo_level = "High" if analysis.get('darvo_score', 0) >= 0.65 else "Moderate" if analysis.get('darvo_score', 0) >= 0.25 else "Low"
|
214 |
-
darvo_color = "#ef4444" if darvo_level == "High" else "#f59e0b" if darvo_level == "Moderate" else "#10b981"
|
215 |
-
|
216 |
-
primary_abuser_html += f"""
|
217 |
-
<h4 style='color: #1f2937; margin-top: 20px;'>DARVO Analysis</h4>
|
218 |
-
<p style='color: #1f2937;'>DARVO Score: <strong style='color: {darvo_color};'>{analysis.get('darvo_score', 0):.3f}</strong> ({darvo_level})</p>
|
219 |
-
<p style='color: #1f2937; font-size: 0.9em;'>DARVO (Deny, Attack, Reverse Victim & Offender) indicates attempts to shift blame and manipulate the narrative.</p>
|
220 |
-
"""
|
221 |
-
|
222 |
-
# Add time patterns section
|
223 |
-
primary_abuser_html += "<h4 style='color: #1f2937; margin-top: 20px;'>Communication Timing Patterns</h4>"
|
224 |
-
|
225 |
-
# Peak hours
|
226 |
-
primary_abuser_html += "<p style='color: #1f2937;'><strong>Peak Hours:</strong> "
|
227 |
-
if analysis.get('peak_hours'):
|
228 |
-
peak_hours_formatted = [f"{h}:00" for h in analysis['peak_hours']]
|
229 |
-
primary_abuser_html += f"{', '.join(peak_hours_formatted)}</p>"
|
230 |
-
else:
|
231 |
-
primary_abuser_html += "No clear pattern</p>"
|
232 |
-
|
233 |
-
# Peak days
|
234 |
-
primary_abuser_html += "<p style='color: #1f2937;'><strong>Peak Days:</strong> "
|
235 |
-
if analysis.get('peak_days'):
|
236 |
-
primary_abuser_html += f"{', '.join(analysis['peak_days'])}</p>"
|
237 |
-
else:
|
238 |
-
primary_abuser_html += "No clear pattern</p>"
|
239 |
-
|
240 |
-
primary_abuser_html += "</div>"
|
241 |
-
else:
|
242 |
-
primary_abuser_html += "<p style='color: #1f2937;'>No clear pattern of concerning communication from a specific sender.</p>"
|
243 |
-
|
244 |
-
# Format escalation data
|
245 |
-
escalation = "<h3 style='color: #1f2937;'>Escalation Analysis</h3>"
|
246 |
-
if summary['escalation_data']:
|
247 |
-
trend = summary['escalation_data'].get('trend_direction', 'unknown')
|
248 |
-
trend_strength = summary['escalation_data'].get('trend_strength', 0)
|
249 |
-
recent_avg = summary['escalation_data'].get('recent_average', 0)
|
250 |
-
future_prediction = summary['escalation_data'].get('future_prediction')
|
251 |
-
cyclic_pattern = summary['escalation_data'].get('cyclic_pattern', False)
|
252 |
|
253 |
-
#
|
254 |
-
|
|
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
if
|
261 |
-
|
262 |
-
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
<div style='margin-top: 15px; padding: 10px; background-color: #fffbeb; border-left: 4px solid #f59e0b; border-radius: 4px;'>
|
268 |
-
<p style='color: #1f2937; margin: 0;'><strong style='color: #1f2937;'>⚠️ Cyclic Abuse Pattern Detected</strong></p>
|
269 |
-
<p style='color: #1f2937; margin-top: 5px;'>The analysis shows a repeating cycle of approximately {cycle_period} days. This is consistent with the cycle of abuse, where periods of tension and abuse are followed by reconciliation and calm before repeating.</p>
|
270 |
-
</div>
|
271 |
-
"""
|
272 |
-
else:
|
273 |
-
escalation += "<p style='color: #1f2937;'>No escalation data available.</p>"
|
274 |
-
|
275 |
-
# Format recommendations
|
276 |
-
recommendations = "<h3 style='color: #1f2937;'>Professional Recommendations</h3>"
|
277 |
-
if summary['recommendations']:
|
278 |
-
recommendations += "<div style='max-height: 300px; overflow-y: auto;'>"
|
279 |
-
for rec in summary['recommendations']:
|
280 |
-
recommendations += f"<div style='margin-bottom: 15px; padding: 15px; background: #f8f9fa; border-radius: 8px; border-left: 4px solid #3b82f6;'>"
|
281 |
-
recommendations += f"<h4 style='color: #1f2937; margin-top: 0;'>{rec['title']}</h4>"
|
282 |
-
recommendations += f"<p style='color: #1f2937;'>{rec['description']}</p>"
|
283 |
-
|
284 |
-
if rec['actions']:
|
285 |
-
recommendations += "<ul style='color: #1f2937;'>"
|
286 |
-
for action in rec['actions']:
|
287 |
-
recommendations += f"<li style='color: #1f2937; margin-bottom: 5px;'>{action}</li>"
|
288 |
-
recommendations += "</ul>"
|
289 |
-
|
290 |
-
recommendations += "</div>"
|
291 |
-
recommendations += "</div>"
|
292 |
-
else:
|
293 |
-
recommendations += "<p style='color: #1f2937;'>No recommendations available.</p>"
|
294 |
-
|
295 |
-
# Combine all sections
|
296 |
-
html = f"""
|
297 |
-
<div style="padding: 20px; border: 1px solid #ddd; border-radius: 10px; background-color: #ffffff;">
|
298 |
-
{basic_info}
|
299 |
-
{sender_stats}
|
300 |
-
{primary_abuser_html}
|
301 |
-
{escalation}
|
302 |
-
{recommendations}
|
303 |
-
</div>
|
304 |
-
"""
|
305 |
-
|
306 |
-
return html
|
307 |
-
except Exception as e:
|
308 |
-
logger.error(f"Error formatting summary results: {e}")
|
309 |
-
logger.error(traceback.format_exc())
|
310 |
-
return f"<p style='color: #1f2937;'>Error formatting summary: {str(e)}</p>"
|
311 |
-
|
312 |
-
def format_safety_plan(safety_plan):
|
313 |
-
"""Format safety plan for display"""
|
314 |
-
try:
|
315 |
-
# Convert markdown-like formatting to HTML
|
316 |
-
html = safety_plan.replace("**", "<strong>").replace("**", "</strong>")
|
317 |
-
html = html.replace("\n\n", "<br><br>")
|
318 |
-
html = html.replace("\n•", "<br>•")
|
319 |
-
|
320 |
-
# Wrap in styled div
|
321 |
-
html = f"""
|
322 |
-
<div style="padding: 20px; border: 1px solid #ddd; border-radius: 10px; background-color: #ffffff;">
|
323 |
-
<h2 style="color: #1f2937;">Safety Plan</h2>
|
324 |
-
<div style="white-space: pre-wrap; color: #1f2937;">
|
325 |
-
{html}
|
326 |
-
</div>
|
327 |
-
</div>
|
328 |
-
"""
|
329 |
-
|
330 |
-
return html
|
331 |
-
except Exception as e:
|
332 |
-
logger.error(f"Error formatting safety plan: {e}")
|
333 |
-
return f"<p style='color: #1f2937;'>Error formatting safety plan: {str(e)}</p>"
|
334 |
-
|
335 |
-
def handle_file_analysis(file_path):
|
336 |
-
if not file_path:
|
337 |
-
return (
|
338 |
-
"<p style='color: #1f2937;'>Please upload a file first.</p>",
|
339 |
-
None, None, None, None,
|
340 |
-
"<p style='color: #1f2937;'>Please upload a file first.</p>"
|
341 |
-
)
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
)
|
|
|
|
|
|
|
|
|
390 |
|
391 |
-
def
|
392 |
-
|
393 |
-
|
|
|
394 |
|
395 |
try:
|
396 |
-
#
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
399 |
-
|
400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
|
402 |
-
#
|
403 |
-
|
|
|
|
|
|
|
|
|
404 |
|
405 |
-
return html
|
406 |
except Exception as e:
|
407 |
-
|
408 |
-
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
|
|
411 |
def create_interface():
|
412 |
-
""
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
419 |
""")
|
420 |
|
421 |
-
with gr.
|
422 |
-
with gr.
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
)
|
428 |
-
analyze_button = gr.Button("Analyze Chat History")
|
429 |
-
|
430 |
-
with gr.Column(scale=2):
|
431 |
-
summary_output = gr.HTML(
|
432 |
-
label="Analysis Summary",
|
433 |
-
value="<p style='color: #1f2937;'>Upload a file and click 'Analyze Chat History' to see results.</p>",
|
434 |
-
elem_id="summary_output"
|
435 |
-
)
|
436 |
-
|
437 |
-
with gr.Row():
|
438 |
-
with gr.Column():
|
439 |
-
timeline_plot = gr.Plot(label="Abuse Score Timeline")
|
440 |
-
|
441 |
-
with gr.Column():
|
442 |
-
pattern_plot = gr.Plot(label="Pattern Frequency")
|
443 |
-
|
444 |
-
with gr.Row():
|
445 |
-
with gr.Column():
|
446 |
-
sender_plot = gr.Plot(label="Sender Comparison")
|
447 |
-
|
448 |
-
with gr.Column():
|
449 |
-
heatmap_plot = gr.Plot(label="Time of Day Analysis")
|
450 |
-
|
451 |
-
with gr.Row():
|
452 |
-
safety_plan_output = gr.HTML(
|
453 |
-
label="Safety Plan",
|
454 |
-
value="<p style='color: #1f2937;'>Safety plan will appear here after analysis.</p>"
|
455 |
)
|
456 |
-
|
457 |
-
with gr.Tab("Single Message Analysis"):
|
458 |
-
with gr.Row():
|
459 |
-
with gr.Column(scale=1):
|
460 |
-
message_input = gr.Textbox(
|
461 |
-
label="Enter Message",
|
462 |
-
placeholder="Type or paste a message to analyze...",
|
463 |
-
lines=5
|
464 |
-
)
|
465 |
-
analyze_message_button = gr.Button("Analyze Message")
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
with gr.Tab("About"):
|
474 |
-
gr.HTML("""
|
475 |
-
<div style="padding: 20px;">
|
476 |
-
<h2>About Relationship Pattern Analyzer Pro</h2>
|
477 |
-
<p>This tool helps identify potentially concerning communication patterns in relationships.</p>
|
478 |
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
<li><strong>Intent Analysis:</strong> Identify manipulative tactics and emotional tone</li>
|
485 |
-
<li><strong>Safety Planning:</strong> Get personalized safety recommendations based on detected patterns</li>
|
486 |
-
<li><strong>Professional Insights:</strong> View recommendations for professional intervention</li>
|
487 |
-
</ul>
|
488 |
|
489 |
-
|
490 |
-
|
|
|
|
|
|
|
491 |
|
492 |
-
|
493 |
-
<p><strong>National Domestic Violence Hotline:</strong> 1-800-799-7233</p>
|
494 |
-
<p><strong>Crisis Text Line:</strong> Text START to 88788</p>
|
495 |
-
<p><strong>Emergency:</strong> Call 911</p>
|
496 |
-
</div>
|
497 |
-
""")
|
498 |
-
|
499 |
-
# Connect event handlers
|
500 |
-
analyze_button.click(
|
501 |
-
handle_file_analysis,
|
502 |
-
inputs=[file_input],
|
503 |
-
outputs=[
|
504 |
-
summary_output,
|
505 |
-
timeline_plot,
|
506 |
-
pattern_plot,
|
507 |
-
sender_plot,
|
508 |
-
heatmap_plot,
|
509 |
-
safety_plan_output
|
510 |
-
]
|
511 |
-
)
|
512 |
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
-
return
|
520 |
|
521 |
if __name__ == "__main__":
|
522 |
-
|
523 |
-
|
524 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
6 |
from datetime import datetime
|
7 |
+
import io
|
8 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
class CommunicationAnalyzer:
|
11 |
+
def __init__(self):
|
12 |
+
self.load_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def load_models(self):
|
15 |
+
"""Load all the analysis models"""
|
16 |
+
try:
|
17 |
+
# DARVO Detection
|
18 |
+
self.darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
|
19 |
+
self.darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Sentiment Analysis
|
22 |
+
self.sentiment_pipeline = pipeline("text-classification", model="SamanthaStorm/tether-sentiment-v3")
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Multilabel Classification
|
25 |
+
self.multilabel_pipeline = pipeline("text-classification", model="SamanthaStorm/tether-multilabel-v6")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Healthy Boundary Detection
|
28 |
+
self.boundary_pipeline = pipeline("text-classification", model="SamanthaStorm/healthy-boundary-predictor")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# Fallacy Detection
|
31 |
+
self.fallacy_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/fallacyfinder")
|
32 |
+
self.fallacy_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/fallacyfinder")
|
33 |
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error loading models: {e}")
|
36 |
+
|
37 |
+
def analyze_darvo(self, text):
|
38 |
+
"""Analyze DARVO tactics in text"""
|
39 |
+
try:
|
40 |
+
inputs = self.darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = self.darvo_model(**inputs)
|
43 |
+
darvo_score = torch.sigmoid(outputs.logits).item()
|
44 |
+
return darvo_score
|
45 |
+
except:
|
46 |
+
return 0.0
|
47 |
+
|
48 |
+
def analyze_fallacy(self, text):
|
49 |
+
"""Detect logical fallacies in text"""
|
50 |
+
try:
|
51 |
+
inputs = self.fallacy_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = self.fallacy_model(**inputs)
|
54 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
55 |
+
predicted_class_id = predictions.argmax().item()
|
56 |
+
confidence = predictions.max().item()
|
57 |
|
58 |
+
if hasattr(self.fallacy_model.config, 'id2label'):
|
59 |
+
predicted_label = self.fallacy_model.config.id2label[predicted_class_id]
|
60 |
+
else:
|
61 |
+
predicted_label = f"Fallacy_Type_{predicted_class_id}"
|
62 |
|
63 |
+
return predicted_label, confidence
|
64 |
+
except:
|
65 |
+
return "No Fallacy", 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
def analyze_message(self, text):
|
68 |
+
"""Comprehensive analysis of a single message"""
|
69 |
+
if not text or len(text.strip()) < 3:
|
70 |
+
return {}
|
71 |
+
|
72 |
+
analysis = {}
|
73 |
+
|
74 |
+
# DARVO Analysis
|
75 |
+
analysis['darvo_score'] = self.analyze_darvo(text)
|
76 |
+
|
77 |
+
# Sentiment Analysis
|
78 |
+
try:
|
79 |
+
sentiment_result = self.sentiment_pipeline(text)
|
80 |
+
analysis['sentiment'] = sentiment_result[0]['label']
|
81 |
+
analysis['sentiment_confidence'] = sentiment_result[0]['score']
|
82 |
+
except:
|
83 |
+
analysis['sentiment'] = 'NEUTRAL'
|
84 |
+
analysis['sentiment_confidence'] = 0.5
|
85 |
+
|
86 |
+
# Multilabel Analysis
|
87 |
+
try:
|
88 |
+
multilabel_result = self.multilabel_pipeline(text)
|
89 |
+
analysis['categories'] = multilabel_result
|
90 |
+
except:
|
91 |
+
analysis['categories'] = []
|
92 |
+
|
93 |
+
# Boundary Analysis
|
94 |
+
try:
|
95 |
+
boundary_result = self.boundary_pipeline(text)
|
96 |
+
analysis['boundary_type'] = boundary_result[0]['label']
|
97 |
+
analysis['boundary_confidence'] = boundary_result[0]['score']
|
98 |
+
except:
|
99 |
+
analysis['boundary_type'] = 'UNCLEAR'
|
100 |
+
analysis['boundary_confidence'] = 0.5
|
101 |
+
|
102 |
+
# Fallacy Analysis
|
103 |
+
fallacy_type, fallacy_confidence = self.analyze_fallacy(text)
|
104 |
+
analysis['fallacy_type'] = fallacy_type
|
105 |
+
analysis['fallacy_confidence'] = fallacy_confidence
|
106 |
+
|
107 |
+
return analysis
|
108 |
+
|
109 |
+
def calculate_abuse_indicators(self, person_data):
|
110 |
+
"""Calculate abuse indicators for a person based on their messages"""
|
111 |
+
if not person_data:
|
112 |
+
return {}
|
113 |
+
|
114 |
+
# Aggregate scores
|
115 |
+
darvo_scores = [msg.get('darvo_score', 0) for msg in person_data]
|
116 |
+
negative_sentiments = sum(1 for msg in person_data if msg.get('sentiment') == 'NEGATIVE')
|
117 |
+
fallacy_count = sum(1 for msg in person_data if msg.get('fallacy_confidence', 0) > 0.7)
|
118 |
+
|
119 |
+
total_messages = len(person_data)
|
120 |
+
|
121 |
+
indicators = {
|
122 |
+
'avg_darvo_score': np.mean(darvo_scores) if darvo_scores else 0,
|
123 |
+
'max_darvo_score': max(darvo_scores) if darvo_scores else 0,
|
124 |
+
'negative_sentiment_ratio': negative_sentiments / total_messages if total_messages > 0 else 0,
|
125 |
+
'fallacy_ratio': fallacy_count / total_messages if total_messages > 0 else 0,
|
126 |
+
'total_messages': total_messages,
|
127 |
+
'high_darvo_messages': sum(1 for score in darvo_scores if score > 0.7)
|
128 |
+
}
|
129 |
+
|
130 |
+
# Calculate overall abuse likelihood
|
131 |
+
abuse_score = (
|
132 |
+
indicators['avg_darvo_score'] * 0.4 +
|
133 |
+
indicators['negative_sentiment_ratio'] * 0.2 +
|
134 |
+
indicators['fallacy_ratio'] * 0.2 +
|
135 |
+
(indicators['high_darvo_messages'] / total_messages if total_messages > 0 else 0) * 0.2
|
136 |
)
|
137 |
+
|
138 |
+
indicators['abuse_likelihood'] = min(abuse_score, 1.0)
|
139 |
+
|
140 |
+
return indicators
|
141 |
|
142 |
+
def analyze_csv_file(file, message_col, sender_col, report_type):
|
143 |
+
"""Main function to analyze uploaded CSV file"""
|
144 |
+
if file is None:
|
145 |
+
return "Please upload a CSV file.", "", ""
|
146 |
|
147 |
try:
|
148 |
+
# Read CSV file
|
149 |
+
df = pd.read_csv(file.name)
|
150 |
+
|
151 |
+
if message_col not in df.columns or sender_col not in df.columns:
|
152 |
+
return f"Columns '{message_col}' or '{sender_col}' not found in CSV.", "", ""
|
153 |
+
|
154 |
+
# Initialize analyzer
|
155 |
+
analyzer = CommunicationAnalyzer()
|
156 |
+
|
157 |
+
# Analyze each message
|
158 |
+
results = []
|
159 |
+
person_analyses = {}
|
160 |
|
161 |
+
for idx, row in df.iterrows():
|
162 |
+
message = str(row[message_col])
|
163 |
+
sender = str(row[sender_col])
|
164 |
+
|
165 |
+
if sender not in person_analyses:
|
166 |
+
person_analyses[sender] = []
|
167 |
+
|
168 |
+
analysis = analyzer.analyze_message(message)
|
169 |
+
analysis['message'] = message
|
170 |
+
analysis['sender'] = sender
|
171 |
+
analysis['message_id'] = idx
|
172 |
+
|
173 |
+
results.append(analysis)
|
174 |
+
person_analyses[sender].append(analysis)
|
175 |
+
|
176 |
+
# Calculate abuse indicators for each person
|
177 |
+
person_indicators = {}
|
178 |
+
for person, messages in person_analyses.items():
|
179 |
+
person_indicators[person] = analyzer.calculate_abuse_indicators(messages)
|
180 |
|
181 |
+
# Generate reports
|
182 |
+
summary_report = generate_summary_report(person_indicators, results, report_type)
|
183 |
+
detailed_report = generate_detailed_report(results, person_indicators, report_type)
|
184 |
+
downloadable_report = generate_downloadable_report(results, person_indicators, report_type)
|
185 |
+
|
186 |
+
return summary_report, detailed_report, downloadable_report
|
187 |
|
|
|
188 |
except Exception as e:
|
189 |
+
return f"Error processing file: {str(e)}", "", ""
|
190 |
+
|
191 |
+
def generate_summary_report(person_indicators, results, report_type):
|
192 |
+
"""Generate summary report identifying potential abuser"""
|
193 |
+
|
194 |
+
# Sort people by abuse likelihood
|
195 |
+
sorted_people = sorted(person_indicators.items(), key=lambda x: x[1]['abuse_likelihood'], reverse=True)
|
196 |
+
|
197 |
+
report = f"# Communication Analysis Summary Report\n"
|
198 |
+
report += f"**Report Type:** {report_type}\n"
|
199 |
+
report += f"**Analysis Date:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
|
200 |
+
report += f"**Total Messages Analyzed:** {len(results)}\n\n"
|
201 |
+
|
202 |
+
report += "## Abuse Likelihood Rankings\n\n"
|
203 |
+
|
204 |
+
for i, (person, indicators) in enumerate(sorted_people, 1):
|
205 |
+
risk_level = "HIGH" if indicators['abuse_likelihood'] > 0.7 else "MEDIUM" if indicators['abuse_likelihood'] > 0.4 else "LOW"
|
206 |
+
|
207 |
+
report += f"### {i}. {person}\n"
|
208 |
+
report += f"- **Risk Level:** {risk_level}\n"
|
209 |
+
report += f"- **Abuse Likelihood Score:** {indicators['abuse_likelihood']:.3f}\n"
|
210 |
+
report += f"- **Average DARVO Score:** {indicators['avg_darvo_score']:.3f}\n"
|
211 |
+
report += f"- **Negative Sentiment Ratio:** {indicators['negative_sentiment_ratio']:.3f}\n"
|
212 |
+
report += f"- **Fallacy Usage Ratio:** {indicators['fallacy_ratio']:.3f}\n"
|
213 |
+
report += f"- **Total Messages:** {indicators['total_messages']}\n\n"
|
214 |
+
|
215 |
+
if sorted_people:
|
216 |
+
primary_concern = sorted_people[0]
|
217 |
+
if primary_concern[1]['abuse_likelihood'] > 0.6:
|
218 |
+
report += f"## ⚠️ Primary Concern\n"
|
219 |
+
report += f"**{primary_concern[0]}** shows the highest indicators of potentially abusive communication patterns.\n\n"
|
220 |
+
|
221 |
+
return report
|
222 |
+
|
223 |
+
def generate_detailed_report(results, person_indicators, report_type):
|
224 |
+
"""Generate detailed analysis report"""
|
225 |
+
|
226 |
+
report = f"# Detailed Communication Analysis\n\n"
|
227 |
+
|
228 |
+
# High-risk messages
|
229 |
+
high_risk_messages = [r for r in results if r.get('darvo_score', 0) > 0.7]
|
230 |
+
|
231 |
+
if high_risk_messages:
|
232 |
+
report += "## High-Risk Messages (DARVO Score > 0.7)\n\n"
|
233 |
+
for msg in high_risk_messages[:10]: # Limit to top 10
|
234 |
+
report += f"**Sender:** {msg['sender']}\n"
|
235 |
+
report += f"**Message:** \"{msg['message'][:200]}{'...' if len(msg['message']) > 200 else ''}\"\n"
|
236 |
+
report += f"**DARVO Score:** {msg['darvo_score']:.3f}\n"
|
237 |
+
report += f"**Sentiment:** {msg.get('sentiment', 'N/A')}\n"
|
238 |
+
report += f"**Fallacy Type:** {msg.get('fallacy_type', 'N/A')}\n\n"
|
239 |
+
|
240 |
+
# Pattern analysis
|
241 |
+
report += "## Communication Patterns\n\n"
|
242 |
+
for person, indicators in person_indicators.items():
|
243 |
+
if indicators['abuse_likelihood'] > 0.5:
|
244 |
+
report += f"### {person} - Pattern Analysis\n"
|
245 |
+
report += f"- Frequently uses DARVO tactics ({indicators['high_darvo_messages']} high-scoring messages)\n"
|
246 |
+
report += f"- {indicators['negative_sentiment_ratio']*100:.1f}% of messages have negative sentiment\n"
|
247 |
+
report += f"- Uses logical fallacies in {indicators['fallacy_ratio']*100:.1f}% of messages\n\n"
|
248 |
+
|
249 |
+
return report
|
250 |
+
|
251 |
+
def generate_downloadable_report(results, person_indicators, report_type):
|
252 |
+
"""Generate downloadable comprehensive report"""
|
253 |
+
|
254 |
+
report_data = {
|
255 |
+
"analysis_metadata": {
|
256 |
+
"report_type": report_type,
|
257 |
+
"analysis_date": datetime.now().isoformat(),
|
258 |
+
"total_messages": len(results),
|
259 |
+
"total_participants": len(person_indicators)
|
260 |
+
},
|
261 |
+
"person_indicators": person_indicators,
|
262 |
+
"high_risk_messages": [r for r in results if r.get('darvo_score', 0) > 0.6],
|
263 |
+
"summary": {
|
264 |
+
"primary_concern": max(person_indicators.items(), key=lambda x: x[1]['abuse_likelihood']) if person_indicators else None
|
265 |
+
}
|
266 |
+
}
|
267 |
+
|
268 |
+
# Convert to JSON string for download
|
269 |
+
return json.dumps(report_data, indent=2, default=str)
|
270 |
|
271 |
+
# Create Gradio interface
|
272 |
def create_interface():
|
273 |
+
with gr.Blocks(title="Communication Analysis Tool", theme=gr.themes.Soft()) as interface:
|
274 |
+
gr.Markdown("""
|
275 |
+
# 🔍 Communication Analysis Tool
|
276 |
+
|
277 |
+
This tool analyzes communication patterns to identify potentially abusive behavior using multiple AI models:
|
278 |
+
- **DARVO Detection**: Identifies Deny, Attack, Reverse Victim & Offender tactics
|
279 |
+
- **Sentiment Analysis**: Analyzes emotional tone
|
280 |
+
- **Fallacy Detection**: Identifies logical fallacies
|
281 |
+
- **Boundary Analysis**: Detects healthy vs unhealthy boundaries
|
282 |
+
|
283 |
+
**For use by therapists, counselors, and law enforcement professionals.**
|
284 |
""")
|
285 |
|
286 |
+
with gr.Row():
|
287 |
+
with gr.Column():
|
288 |
+
file_input = gr.File(
|
289 |
+
label="Upload CSV File",
|
290 |
+
file_types=[".csv"],
|
291 |
+
type="filepath"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
+
message_col = gr.Textbox(
|
295 |
+
label="Message Column Name",
|
296 |
+
value="message",
|
297 |
+
placeholder="Enter the column name containing messages"
|
298 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
+
sender_col = gr.Textbox(
|
301 |
+
label="Sender Column Name",
|
302 |
+
value="sender",
|
303 |
+
placeholder="Enter the column name containing sender names"
|
304 |
+
)
|
|
|
|
|
|
|
|
|
305 |
|
306 |
+
report_type = gr.Radio(
|
307 |
+
choices=["Therapeutic Assessment", "Legal Documentation", "General Analysis"],
|
308 |
+
label="Report Type",
|
309 |
+
value="General Analysis"
|
310 |
+
)
|
311 |
|
312 |
+
analyze_btn = gr.Button("Analyze Communication", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
+
with gr.Row():
|
315 |
+
with gr.Column():
|
316 |
+
summary_output = gr.Markdown(label="Summary Report")
|
317 |
+
|
318 |
+
with gr.Column():
|
319 |
+
detailed_output = gr.Markdown(label="Detailed Analysis")
|
320 |
+
|
321 |
+
download_output = gr.File(label="Download Complete Report (JSON)")
|
322 |
+
|
323 |
+
def process_and_create_download(file, message_col, sender_col, report_type):
|
324 |
+
summary, detailed, report_data = analyze_csv_file(file, message_col, sender_col, report_type)
|
325 |
+
|
326 |
+
# Create downloadable file
|
327 |
+
if report_data:
|
328 |
+
filename = f"communication_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
329 |
+
with open(filename, 'w') as f:
|
330 |
+
f.write(report_data)
|
331 |
+
return summary, detailed, filename
|
332 |
+
|
333 |
+
return summary, detailed, None
|
334 |
+
|
335 |
+
analyze_btn.click(
|
336 |
+
fn=process_and_create_download,
|
337 |
+
inputs=[file_input, message_col, sender_col, report_type],
|
338 |
+
outputs=[summary_output, detailed_output, download_output]
|
339 |
)
|
340 |
+
|
341 |
+
gr.Markdown("""
|
342 |
+
## Instructions:
|
343 |
+
1. Upload a CSV file containing communication data
|
344 |
+
2. Specify the column names for messages and senders
|
345 |
+
3. Choose the appropriate report type
|
346 |
+
4. Click "Analyze Communication" to generate reports
|
347 |
+
5. Download the complete analysis for your records
|
348 |
+
|
349 |
+
**Note:** This tool is designed to assist professionals in identifying concerning communication patterns.
|
350 |
+
Results should be interpreted by qualified professionals and used as part of a comprehensive assessment.
|
351 |
+
""")
|
352 |
|
353 |
+
return interface
|
354 |
|
355 |
if __name__ == "__main__":
|
356 |
+
interface = create_interface()
|
357 |
+
interface.launch()
|
|