File size: 3,550 Bytes
aae2aac
 
 
 
 
 
 
 
788697a
aae2aac
 
 
 
afd6f20
aae2aac
42545c2
 
 
 
 
 
 
 
 
aae2aac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42545c2
 
aae2aac
42545c2
aae2aac
 
 
 
 
 
 
 
42545c2
aae2aac
b2f9f4f
aae2aac
 
 
 
 
 
 
6ab12cc
aae2aac
 
 
630b911
be8d3e7
 
362218f
42545c2
 
 
7c1b1e5
797b9ba
b2f9f4f
3a7a0e5
 
 
aca86ac
362218f
58ed3f4
aca86ac
8f09828
 
797b9ba
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from turtle import title
import os 
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
import torch 
import cv2 
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation,AutoProcessor,AutoConfig
from skimage.measure import label, regionprops

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
classes = list()

def create_mask(image,image_mask,alpha=0.7):
    mask = np.zeros_like(image)
    # copy your image_mask to all dimensions (i.e. colors) of your image
    for i in range(3): 
        mask[:,:,i] = image_mask.copy()
    # apply the mask to your image
    overlay_image = cv2.addWeighted(mask,alpha,image,1-alpha,0)
    return overlay_image

def rescale_bbox(bbox,orig_image_shape=(1024,1024),model_shape=352):
    bbox = np.asarray(bbox)/model_shape
    y1,y2 = bbox[::2] *orig_image_shape[0]
    x1,x2 = bbox[1::2]*orig_image_shape[1]
    return [int(y1),int(x1),int(y2),int(x2)]

def detect_using_clip(image,prompts=[],threshould=0.4):
    model_detections = dict()
    inputs = processor(
        text=prompts,
        images=[image] * len(prompts),
        padding="max_length",
        return_tensors="pt",
    )
    with torch.no_grad():  # Use 'torch.no_grad()' to disable gradient computation
        outputs = model(**inputs)
    preds = outputs.logits.unsqueeze(1)

    # tensor_images = [torch.sigmoid(preds[i][0]) for i in range(len(prompts))]
    detection = outputs.logits[0]  # Assuming class index 0

    for i,prompt in enumerate(prompts):
        predicted_image =  torch.sigmoid(preds[i][0]).detach().cpu().numpy()
        predicted_image = np.where(predicted_image>threshould,255,0)
        # extract countours from the image
        lbl_0 = label(predicted_image)
        props = regionprops(lbl_0)
        model_detections[prompt] = [rescale_bbox(prop.bbox,orig_image_shape=image.shape[:2],model_shape=predicted_image.shape[0]) for prop in props]

    return model_detections 

def visualize_images(image,detections,prompt):
    H,W = image.shape[:2]
    image_copy = image.copy()
    if prompt not in detections.keys():
        print("prompt not in query ..")
        return image_copy
    for bbox in detections[prompt]:
        cv2.rectangle(image_copy, (int(bbox[1]), int(bbox[0])), (int(bbox[3]), int(bbox[2])), (255, 0, 0), 2)
        cv2.putText(image_copy,str(prompt),(int(bbox[1]), int(bbox[0])),cv2.FONT_HERSHEY_SIMPLEX, 2, 255)
    return image_copy


def shot(image, labels_text,selected_categoty):
    prompts = labels_text.split(',')
    prompts = list(map(lambda x: x.strip(),prompts))

    model_detections = detect_using_clip(image,prompts=prompts)
    category_image = visualize_images(image=image,detections=model_detections,prompt=selected_categoty)
    return category_image

iface = gr.Interface(fn=shot,
                    inputs = ["image","text","text"],
                    outputs = "image",
                    description ="Add an Image and list of category to be detected separated by commas",
                    title = "Zero-shot Image Classification with Prompt ",
                    examples=[
                        ["images/room.jpg","bed, table, plant, light, window",'plant'],
                        ["images/image2.png","banner,building facade,door","door"]
                        ],
                    # allow_flagging=False, 
                    # analytics_enabled=False,
                )
iface.launch()