Spaces:
Sleeping
Sleeping
Commit
·
49dbc00
1
Parent(s):
56bcbd9
adding online PDF loader
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import gradio as gr
|
3 |
|
4 |
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
|
5 |
-
from langchain.text_splitter import
|
6 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
from langchain import HuggingFaceHub
|
@@ -27,7 +27,7 @@ def get_openai_chat_model(API_key):
|
|
27 |
return llm
|
28 |
|
29 |
def process_documents(documents,data_chunk=1000,chunk_overlap=50):
|
30 |
-
text_splitter =
|
31 |
texts = text_splitter.split_documents(documents)
|
32 |
return texts
|
33 |
|
@@ -56,7 +56,6 @@ def document_loader(file_path,api_key,doc_type='pdf',llm='Huggingface'):
|
|
56 |
elif doc_type == 'word':
|
57 |
document = process_word_document(document_file=file_path)
|
58 |
if document:
|
59 |
-
print("Document :",document)
|
60 |
texts = process_documents(documents=document)
|
61 |
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
|
62 |
global qa
|
@@ -77,7 +76,6 @@ def process_text_document(document_file):
|
|
77 |
document = loader.load()
|
78 |
return document
|
79 |
|
80 |
-
|
81 |
def process_csv_document(document_file):
|
82 |
loader = CSVLoader(file_path=document_file.name)
|
83 |
document = loader.load()
|
@@ -94,7 +92,7 @@ def process_pdf_document(document_file):
|
|
94 |
print("Document File Name :",document_file.name)
|
95 |
loader = PDFMinerLoader(document_file.name)
|
96 |
document = loader.load()
|
97 |
-
return document
|
98 |
|
99 |
|
100 |
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
from langchain import HuggingFaceHub
|
|
|
27 |
return llm
|
28 |
|
29 |
def process_documents(documents,data_chunk=1000,chunk_overlap=50):
|
30 |
+
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
|
31 |
texts = text_splitter.split_documents(documents)
|
32 |
return texts
|
33 |
|
|
|
56 |
elif doc_type == 'word':
|
57 |
document = process_word_document(document_file=file_path)
|
58 |
if document:
|
|
|
59 |
texts = process_documents(documents=document)
|
60 |
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
|
61 |
global qa
|
|
|
76 |
document = loader.load()
|
77 |
return document
|
78 |
|
|
|
79 |
def process_csv_document(document_file):
|
80 |
loader = CSVLoader(file_path=document_file.name)
|
81 |
document = loader.load()
|
|
|
92 |
print("Document File Name :",document_file.name)
|
93 |
loader = PDFMinerLoader(document_file.name)
|
94 |
document = loader.load()
|
95 |
+
return document
|
96 |
|
97 |
|
98 |
|