Update PDF_Reader.py
Browse files- PDF_Reader.py +16 -4
PDF_Reader.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import os
|
2 |
from langchain_experimental.text_splitter import SemanticChunker
|
|
|
3 |
from langchain_chroma import Chroma
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
6 |
|
7 |
embedding_modelPath = "sentence-transformers/all-MiniLM-l6-v2"
|
8 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_modelPath,model_kwargs = {'device':'cpu'},encode_kwargs = {'normalize_embeddings': False})
|
@@ -22,6 +24,16 @@ def replace_t_with_space(list_of_documents):
|
|
22 |
doc.page_content = doc.page_content.replace('\t', ' ') # Replace tabs with spaces
|
23 |
return list_of_documents
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def read_pdf(pdf_path):
|
26 |
loader = PyPDFLoader(pdf_path)
|
27 |
docs = loader.load()
|
@@ -29,15 +41,15 @@ def read_pdf(pdf_path):
|
|
29 |
return docs
|
30 |
|
31 |
def Chunks(docs):
|
32 |
-
|
33 |
text_splitter = SemanticChunker(embeddings,breakpoint_threshold_type='interquartile')
|
34 |
docs = text_splitter.split_documents(docs)
|
35 |
cleaned_docs = replace_t_with_space(docs)
|
36 |
return cleaned_docs
|
37 |
|
38 |
-
def PDF_4_QA(
|
39 |
-
docs = read_pdf(
|
40 |
-
cleaned_docs = Chunks(docs)
|
|
|
41 |
vectordb = Chroma.from_documents(
|
42 |
documents=cleaned_docs,
|
43 |
embedding=embeddings,
|
|
|
1 |
import os
|
2 |
from langchain_experimental.text_splitter import SemanticChunker
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_chroma import Chroma
|
5 |
from langchain_community.document_loaders import PyPDFLoader
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
|
9 |
embedding_modelPath = "sentence-transformers/all-MiniLM-l6-v2"
|
10 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_modelPath,model_kwargs = {'device':'cpu'},encode_kwargs = {'normalize_embeddings': False})
|
|
|
24 |
doc.page_content = doc.page_content.replace('\t', ' ') # Replace tabs with spaces
|
25 |
return list_of_documents
|
26 |
|
27 |
+
def read_pdf_text(pdf_path):
|
28 |
+
text = ""
|
29 |
+
pdf_reader = PdfReader(pdf_path)
|
30 |
+
for page in pdf_reader.pages:
|
31 |
+
text += page.extract_text()
|
32 |
+
|
33 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
34 |
+
text_chunks = text_splitter.split_text(text)
|
35 |
+
return text_chunks
|
36 |
+
|
37 |
def read_pdf(pdf_path):
|
38 |
loader = PyPDFLoader(pdf_path)
|
39 |
docs = loader.load()
|
|
|
41 |
return docs
|
42 |
|
43 |
def Chunks(docs):
|
|
|
44 |
text_splitter = SemanticChunker(embeddings,breakpoint_threshold_type='interquartile')
|
45 |
docs = text_splitter.split_documents(docs)
|
46 |
cleaned_docs = replace_t_with_space(docs)
|
47 |
return cleaned_docs
|
48 |
|
49 |
+
def PDF_4_QA(file_path):
|
50 |
+
#docs = read_pdf(file_path)
|
51 |
+
#cleaned_docs = Chunks(docs)
|
52 |
+
read_pdf_text(file_path)
|
53 |
vectordb = Chroma.from_documents(
|
54 |
documents=cleaned_docs,
|
55 |
embedding=embeddings,
|