Spaces:
Sleeping
Sleeping
Update PDF_Reader.py
Browse files- PDF_Reader.py +39 -25
PDF_Reader.py
CHANGED
@@ -1,31 +1,45 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from langchain.vectorstores import FAISS
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
text = ""
|
9 |
-
for page in pdf_reader.pages:
|
10 |
-
text += page.extract_text()
|
11 |
-
return text
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
chunk_size = 1000,
|
17 |
-
chunk_overlap = 100,
|
18 |
-
)
|
19 |
-
doc = text_splitter.split_text(docs)
|
20 |
-
return doc
|
21 |
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
2 |
+
from langchain_chroma import Chroma
|
3 |
+
from langchain_community.document_loaders import PyPDFLoader
|
|
|
4 |
|
5 |
+
embedding_modelPath = "sentence-transformers/all-MiniLM-l6-v2"
|
6 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_modelPath,model_kwargs = {'device':'cpu'},encode_kwargs = {'normalize_embeddings': False})
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
def replace_t_with_space(list_of_documents):
|
9 |
+
"""
|
10 |
+
Replaces all tab characters ('\t') with spaces in the page content of each document.
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
Args:
|
13 |
+
list_of_documents: A list of document objects, each with a 'page_content' attribute.
|
14 |
|
15 |
+
Returns:
|
16 |
+
The modified list of documents with tab characters replaced by spaces.
|
17 |
+
"""
|
18 |
|
19 |
+
for doc in list_of_documents:
|
20 |
+
doc.page_content = doc.page_content.replace('\t', ' ') # Replace tabs with spaces
|
21 |
+
return list_of_documents
|
22 |
|
23 |
+
def read_pdf(uploaded_file):
|
24 |
+
loader = PyPDFLoader(pdf_path)
|
25 |
+
docs = loader.load()
|
26 |
+
print("Total Documents :",len(docs))
|
27 |
+
return docs
|
28 |
+
|
29 |
+
def Chunks(docs):
|
30 |
+
|
31 |
+
text_splitter = SemanticChunker(embeddings,breakpoint_threshold_type='interquartile')
|
32 |
+
docs = text_splitter.split_documents(docs)
|
33 |
+
cleaned_docs = replace_t_with_space(docs)
|
34 |
+
return cleaned_docs
|
35 |
+
|
36 |
+
def PDF_4_QA(file):
|
37 |
+
docs = read_pdf(file)
|
38 |
+
cleaned_docs = Chunks(docs)
|
39 |
+
|
40 |
+
vectordb = Chroma.from_documents(
|
41 |
+
documents=cleaned_docs,
|
42 |
+
embedding=local_embeddings,
|
43 |
+
persist_directory=persist_directory
|
44 |
+
)
|
45 |
+
return vectordb
|