Spaces:
Sleeping
Sleeping
Update QnA.py
Browse files
QnA.py
CHANGED
@@ -3,6 +3,8 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
3 |
from langchain.chains import create_retrieval_chain
|
4 |
from langchain.chains.summarize.chain import load_summarize_chain
|
5 |
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
|
|
|
|
6 |
|
7 |
#from Api_Key import google_plam
|
8 |
from langchain_groq import ChatGroq
|
@@ -55,7 +57,7 @@ def summarize(documents,llm):
|
|
55 |
return results['output_text']
|
56 |
|
57 |
|
58 |
-
def get_hugging_face_model(model_id='mistralai/Mixtral-8x7B-Instruct-v0.1',temperature=0.01,max_tokens=
|
59 |
llm = HuggingFaceHub(
|
60 |
huggingfacehub_api_token =api_key ,
|
61 |
repo_id=model_id,
|
@@ -72,6 +74,10 @@ def Q_A(vectorstore,question,API_KEY):
|
|
72 |
|
73 |
# Create a retriever
|
74 |
retriever = vectorstore.as_retriever(search_type = 'similarity',search_kwargs = {'k':2},)
|
|
|
|
|
|
|
|
|
75 |
if 'reliable' in question.lower() or 'relaibility' in question.lower():
|
76 |
question_answer_chain = create_stuff_documents_chain(chat_llm, prompt_template_for_relaibility())
|
77 |
|
|
|
3 |
from langchain.chains import create_retrieval_chain
|
4 |
from langchain.chains.summarize.chain import load_summarize_chain
|
5 |
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
6 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor
|
7 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
8 |
|
9 |
#from Api_Key import google_plam
|
10 |
from langchain_groq import ChatGroq
|
|
|
57 |
return results['output_text']
|
58 |
|
59 |
|
60 |
+
def get_hugging_face_model(model_id='mistralai/Mixtral-8x7B-Instruct-v0.1',temperature=0.01,max_tokens=4096,api_key=None):
|
61 |
llm = HuggingFaceHub(
|
62 |
huggingfacehub_api_token =api_key ,
|
63 |
repo_id=model_id,
|
|
|
74 |
|
75 |
# Create a retriever
|
76 |
retriever = vectorstore.as_retriever(search_type = 'similarity',search_kwargs = {'k':2},)
|
77 |
+
#Create a contextual compressor
|
78 |
+
compressor = LLMChainExtractor.from_llm(chat_llm)
|
79 |
+
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor,base_retriever=retriever)
|
80 |
+
|
81 |
if 'reliable' in question.lower() or 'relaibility' in question.lower():
|
82 |
question_answer_chain = create_stuff_documents_chain(chat_llm, prompt_template_for_relaibility())
|
83 |
|