Spaces:
Sleeping
Sleeping
Commit
·
e963fa4
1
Parent(s):
136eadc
adding app
Browse files- app.py +192 -0
- read_photodocument.py +381 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import re
|
4 |
+
from langchain.vectorstores import FAISS
|
5 |
+
from langchain.embeddings.base import Embeddings
|
6 |
+
from typing import List
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
11 |
+
from read_photodocument import convert_PDF_to_Text
|
12 |
+
from doctr.io import DocumentFile
|
13 |
+
from doctr.models import ocr_predictor
|
14 |
+
import contextlib
|
15 |
+
from langchain.schema import Document
|
16 |
+
from langchain.text_splitter import CharacterTextSplitter
|
17 |
+
from langchain.chains.summarize import load_summarize_chain
|
18 |
+
import logging
|
19 |
+
|
20 |
+
logging.basicConfig(
|
21 |
+
level=logging.INFO,
|
22 |
+
format="%(asctime)s %(levelname)s %(message)s",
|
23 |
+
datefmt="%m/%d/%Y %I:%M:%S",
|
24 |
+
)
|
25 |
+
|
26 |
+
DEVICE = 'cpu'
|
27 |
+
FILE_EXT = ['pdf','jpg','jpeg']
|
28 |
+
DEFAULT_SYSTEM_PROMPT = "As an intelligent AI your task is to extract text from the pdf containing image and create a summary and higlight vital point within it ."
|
29 |
+
|
30 |
+
MAX_NEW_TOKENS = 2048
|
31 |
+
DEFAULT_TEMPERATURE = 0.1
|
32 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
33 |
+
MAX_INPUT_TOKEN_LENGTH = 2048
|
34 |
+
|
35 |
+
embedding_modelPath = 'multi-qa-mpnet-base-dot-v1'# "sentence-transformers/all-MiniLM-l6-v2"
|
36 |
+
local_embeddings = HuggingFaceEmbeddings(model_name=embedding_modelPath,model_kwargs = {'device':'cpu'},encode_kwargs = {'normalize_embeddings': False})
|
37 |
+
|
38 |
+
|
39 |
+
with contextlib.redirect_stdout(None):
|
40 |
+
ocr_model = ocr_predictor(
|
41 |
+
"db_resnet50",
|
42 |
+
"crnn_mobilenet_v3_large",
|
43 |
+
pretrained=True,
|
44 |
+
assume_straight_pages=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
def loading_file():
|
48 |
+
return "Loading..."
|
49 |
+
|
50 |
+
|
51 |
+
def summarize_data(docs,llm_model,chain_type='refine'):
|
52 |
+
prompt_template = """
|
53 |
+
Write a concise summary of the following pointwise avoid repetion:
|
54 |
+
{text}
|
55 |
+
CONCISE SUMMARY:
|
56 |
+
"""
|
57 |
+
refine_template = (
|
58 |
+
"Your job is to produce a final summary in points.\n"
|
59 |
+
"Existing summary up to a certain point: {existing_answer}\n"
|
60 |
+
"write the details of summary pointwise and avoid repetion."
|
61 |
+
)
|
62 |
+
|
63 |
+
prompt = PromptTemplate.from_template(prompt_template)
|
64 |
+
refine_prompt = PromptTemplate.from_template(refine_template)
|
65 |
+
|
66 |
+
chain = load_summarize_chain(llm=llm_model,
|
67 |
+
chain_type=chain_type,
|
68 |
+
# question_prompt=prompt,
|
69 |
+
# refine_prompt=,
|
70 |
+
return_intermediate_steps=False,
|
71 |
+
input_key="input_documents",
|
72 |
+
output_key="output_text",
|
73 |
+
)
|
74 |
+
summary = chain({"input_documents": docs}, return_only_outputs=True)
|
75 |
+
output_text = summary["output_text"].strip()
|
76 |
+
regex = r"CONCISE SUMMARY:(.*)"
|
77 |
+
|
78 |
+
matches = re.finditer(regex, output_text, re.DOTALL)
|
79 |
+
for matchNum, match in enumerate(matches, start=1):
|
80 |
+
for groupNum in range(0, len(match.groups())):
|
81 |
+
groupNum = groupNum + 1
|
82 |
+
lines = match.group(groupNum).strip().split("\n")
|
83 |
+
return lines
|
84 |
+
|
85 |
+
|
86 |
+
def process_documents(texts,data_chunk=1000,chunk_overlap=10):
|
87 |
+
text_splitter = CharacterTextSplitter(
|
88 |
+
separator="\n",
|
89 |
+
chunk_size=data_chunk,
|
90 |
+
chunk_overlap=chunk_overlap,
|
91 |
+
length_function=len
|
92 |
+
)
|
93 |
+
|
94 |
+
texts = text_splitter.split_text(texts)
|
95 |
+
docs = [Document(page_content=txt) for txt in texts]
|
96 |
+
return docs
|
97 |
+
|
98 |
+
def get_hugging_face_model(model_id='tiiuae/falcon-7b-instruct',temperature=0.01,max_tokens=4096,API_key=None):
|
99 |
+
llm = HuggingFaceHub(
|
100 |
+
huggingfacehub_api_token =API_key ,
|
101 |
+
repo_id=model_id,
|
102 |
+
model_kwargs={"temperature":temperature, "max_new_tokens":max_tokens}
|
103 |
+
)
|
104 |
+
return llm
|
105 |
+
|
106 |
+
|
107 |
+
def document_loader(temperature,max_tokens,api_key,model_name,file_path):
|
108 |
+
model = get_hugging_face_model(model_id=model_name,API_key=api_key,temperature=temperature,max_tokens=max_tokens)
|
109 |
+
converted_txt = None
|
110 |
+
if file_path.endswith('.pdf'):
|
111 |
+
conversion_stats = convert_PDF_to_Text(document_file=file_path,ocr_model=ocr_model)
|
112 |
+
converted_txt = conversion_stats["converted_text"]
|
113 |
+
num_pages = conversion_stats["num_pages"]
|
114 |
+
was_truncated = conversion_stats["truncated"]
|
115 |
+
print("Converted text {}\nNum Pages;{}".format(converted_txt,num_pages))
|
116 |
+
|
117 |
+
if converted_txt:
|
118 |
+
print("Document Processed ..")
|
119 |
+
texts = process_documents(documents=converted_txt)
|
120 |
+
lines = summarize_data(docs=texts,llm_model=model)
|
121 |
+
return lines
|
122 |
+
else:
|
123 |
+
return "Error in Processsing document "
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
iface = gr.Interface(
|
128 |
+
fn= document_loader,inputs = [
|
129 |
+
gr.Slider(0.01, 0.1, value=0.01, step=0.01 , label="temperature", info="Choose between 0.01 to 0.1"),
|
130 |
+
gr.Slider(512,MAX_INPUT_TOKEN_LENGTH,value=1024,step=512,label="max new tokens",info='Max new tokens'),
|
131 |
+
gr.Textbox(label="Add API key", type="password"),
|
132 |
+
gr.Dropdown(['tiiuae/falcon-7b-instruct','mistralai/Mistral-7B-v0.1'],label='Large Language Model',info='LLM Service'),
|
133 |
+
"file"
|
134 |
+
]
|
135 |
+
ouputs="text",
|
136 |
+
description ="Summarize your PDF Document having Image • HuggingFace",
|
137 |
+
)
|
138 |
+
|
139 |
+
iface.launch()
|
140 |
+
|
141 |
+
# with gr.Blocks(css=css) as demo:
|
142 |
+
# with gr.Column(elem_id="col-container"):
|
143 |
+
# gr.HTML(title)
|
144 |
+
|
145 |
+
# with gr.Group():
|
146 |
+
# chatbot = gr.Chatbot(height=300)
|
147 |
+
# with gr.Row():
|
148 |
+
# sumarize_btn = gr.Button(value="Summarize", variant="primary", scale = 1)
|
149 |
+
# clean_chat_btn = gr.Button("Delete Chat")
|
150 |
+
|
151 |
+
# with gr.Column():
|
152 |
+
# LLM_option = gr.Dropdown(['tiiuae/falcon-7b-instruct','mistralai/Mistral-7B-v0.1'],label='Large Language Model Selection',info='LLM Service')
|
153 |
+
|
154 |
+
# with gr.Column():
|
155 |
+
# with gr.Box():
|
156 |
+
# file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select type of file to upload !")
|
157 |
+
# pdf_doc = gr.File(label="Upload File", file_types=FILE_EXT, type="file")
|
158 |
+
# with gr.Accordion(label='Advanced options', open=False):
|
159 |
+
# max_new_tokens = gr.Slider(
|
160 |
+
# label='Max new tokens',
|
161 |
+
# minimum=512,
|
162 |
+
# maximum=MAX_NEW_TOKENS,
|
163 |
+
# step=1024,
|
164 |
+
# value=DEFAULT_MAX_NEW_TOKENS,
|
165 |
+
# )
|
166 |
+
# temperature = gr.Slider(
|
167 |
+
# label='Temperature',
|
168 |
+
# minimum=0.01,
|
169 |
+
# maximum=1.0,
|
170 |
+
# step=0.05,
|
171 |
+
# value=DEFAULT_TEMPERATURE,
|
172 |
+
# )
|
173 |
+
# with gr.Row():
|
174 |
+
# langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
|
175 |
+
# load_pdf = gr.Button("Upload File & Generate Embeddings",).style(full_width = False)
|
176 |
+
|
177 |
+
# # chatbot = gr.Chatbot()l̥
|
178 |
+
# # question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
|
179 |
+
# # submit_button = gr.Button("Send Message")
|
180 |
+
|
181 |
+
# if pdf_doc:
|
182 |
+
# load_pdf.click(loading_file, None, langchain_status, queue=False)
|
183 |
+
# load_pdf.click(document_loader, inputs=[pdf_doc,file_extension,temperature,max_new_tokens], outputs=[langchain_status], queue=False)
|
184 |
+
|
185 |
+
# #question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
|
186 |
+
# #submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
|
187 |
+
# sumarize_btn.click()
|
188 |
+
# # submit_btn.then(chatf.highlight_found_text, [chatbot, sources], [sources])
|
189 |
+
# clean_chat_btn.click(clear_chat, [], chatbot)
|
190 |
+
|
191 |
+
|
192 |
+
# demo.launch()
|
read_photodocument.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pprint as pp
|
6 |
+
import re
|
7 |
+
import shutil
|
8 |
+
import time
|
9 |
+
from datetime import date, datetime
|
10 |
+
from os.path import basename, dirname, join
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
from cleantext import clean
|
14 |
+
from doctr.io import DocumentFile
|
15 |
+
from doctr.models import ocr_predictor
|
16 |
+
from libretranslatepy import LibreTranslateAPI
|
17 |
+
from natsort import natsorted
|
18 |
+
from spellchecker import SpellChecker
|
19 |
+
from tqdm.auto import tqdm
|
20 |
+
import nltk
|
21 |
+
import contextlib
|
22 |
+
nltk.download("stopwords") # TODO=find where this requirement originates from
|
23 |
+
|
24 |
+
|
25 |
+
def simple_rename(filepath, target_ext=".txt"):
|
26 |
+
_fp = Path(filepath)
|
27 |
+
basename = _fp.stem
|
28 |
+
return f"OCR_{basename}_{target_ext}"
|
29 |
+
|
30 |
+
|
31 |
+
def rm_local_text_files(name_contains="RESULT_"):
|
32 |
+
"""
|
33 |
+
rm_local_text_files - remove local text files
|
34 |
+
Args:
|
35 |
+
name_contains (str, optional): [description]. Defaults to "OCR_".
|
36 |
+
"""
|
37 |
+
files = [
|
38 |
+
f
|
39 |
+
for f in Path.cwd().iterdir()
|
40 |
+
if f.is_file() and f.suffix == ".txt" and name_contains in f.name
|
41 |
+
]
|
42 |
+
logging.info(f"removing {len(files)} text files")
|
43 |
+
for f in files:
|
44 |
+
os.remove(f)
|
45 |
+
logging.info("done")
|
46 |
+
|
47 |
+
|
48 |
+
def corr(
|
49 |
+
s: str,
|
50 |
+
add_space_when_numerics=False,
|
51 |
+
exceptions=["e.g.", "i.e.", "etc.", "cf.", "vs.", "p."],
|
52 |
+
) -> str:
|
53 |
+
"""corrects spacing in a string
|
54 |
+
Args:
|
55 |
+
s (str): the string to correct
|
56 |
+
add_space_when_numerics (bool, optional): [add a space when a period is between two numbers, example 5.73]. Defaults to False.
|
57 |
+
exceptions (list, optional): [do not change these substrings]. Defaults to ['e.g.', 'i.e.', 'etc.', 'cf.', 'vs.', 'p.'].
|
58 |
+
Returns:
|
59 |
+
str: the corrected string
|
60 |
+
"""
|
61 |
+
if add_space_when_numerics:
|
62 |
+
s = re.sub(r"(\d)\.(\d)", r"\1. \2", s)
|
63 |
+
|
64 |
+
s = re.sub(r"\s+", " ", s)
|
65 |
+
s = re.sub(r'\s([?.!"](?:\s|$))', r"\1", s)
|
66 |
+
|
67 |
+
# fix space before apostrophe
|
68 |
+
s = re.sub(r"\s\'", r"'", s)
|
69 |
+
# fix space after apostrophe
|
70 |
+
s = re.sub(r"'\s", r"'", s)
|
71 |
+
# fix space before comma
|
72 |
+
s = re.sub(r"\s,", r",", s)
|
73 |
+
|
74 |
+
for e in exceptions:
|
75 |
+
expected_sub = re.sub(r"\s", "", e)
|
76 |
+
s = s.replace(expected_sub, e)
|
77 |
+
|
78 |
+
return s
|
79 |
+
|
80 |
+
|
81 |
+
def fix_punct_spaces(string):
|
82 |
+
"""
|
83 |
+
fix_punct_spaces - replace spaces around punctuation with punctuation. For example, "hello , there" -> "hello, there"
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
string : str, required, input string to be corrected
|
87 |
+
Returns
|
88 |
+
-------
|
89 |
+
str, corrected string
|
90 |
+
"""
|
91 |
+
|
92 |
+
fix_spaces = re.compile(r"\s*([?!.,]+(?:\s+[?!.,]+)*)\s*")
|
93 |
+
string = fix_spaces.sub(lambda x: "{} ".format(x.group(1).replace(" ", "")), string)
|
94 |
+
string = string.replace(" ' ", "'")
|
95 |
+
string = string.replace(' " ', '"')
|
96 |
+
return string.strip()
|
97 |
+
|
98 |
+
|
99 |
+
def clean_OCR(ugly_text: str):
|
100 |
+
"""
|
101 |
+
clean_OCR - clean the OCR text files.
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
ugly_text : str, required, input string to be cleaned
|
105 |
+
Returns
|
106 |
+
-------
|
107 |
+
str, cleaned string
|
108 |
+
"""
|
109 |
+
# Remove all the newlines.
|
110 |
+
cleaned_text = ugly_text.replace("\n", " ")
|
111 |
+
# Remove all the tabs.
|
112 |
+
cleaned_text = cleaned_text.replace("\t", " ")
|
113 |
+
# Remove all the double spaces.
|
114 |
+
cleaned_text = cleaned_text.replace(" ", " ")
|
115 |
+
# Remove all the spaces at the beginning of the text.
|
116 |
+
cleaned_text = cleaned_text.lstrip()
|
117 |
+
# remove all instances of "- " and " - "
|
118 |
+
cleaned_text = cleaned_text.replace("- ", "")
|
119 |
+
cleaned_text = cleaned_text.replace(" -", "")
|
120 |
+
return fix_punct_spaces(cleaned_text)
|
121 |
+
|
122 |
+
|
123 |
+
def move2completed(from_dir, filename, new_folder="completed", verbose=False):
|
124 |
+
|
125 |
+
# this is the better version
|
126 |
+
old_filepath = join(from_dir, filename)
|
127 |
+
|
128 |
+
new_filedirectory = join(from_dir, new_folder)
|
129 |
+
|
130 |
+
if not os.path.isdir(new_filedirectory):
|
131 |
+
os.mkdir(new_filedirectory)
|
132 |
+
if verbose:
|
133 |
+
print("created new directory for files at: \n", new_filedirectory)
|
134 |
+
new_filepath = join(new_filedirectory, filename)
|
135 |
+
|
136 |
+
try:
|
137 |
+
shutil.move(old_filepath, new_filepath)
|
138 |
+
logging.info("successfully moved the file {} to */completed.".format(filename))
|
139 |
+
except:
|
140 |
+
logging.info(
|
141 |
+
"ERROR! unable to move file to \n{}. Please investigate".format(
|
142 |
+
new_filepath
|
143 |
+
)
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
"""## pdf2text functions
|
148 |
+
"""
|
149 |
+
|
150 |
+
|
151 |
+
custom_replace_list = {
|
152 |
+
"t0": "to",
|
153 |
+
"'$": "'s",
|
154 |
+
",,": ", ",
|
155 |
+
"_ ": " ",
|
156 |
+
" '": "'",
|
157 |
+
}
|
158 |
+
|
159 |
+
replace_corr_exceptions = {
|
160 |
+
"i. e.": "i.e.",
|
161 |
+
"e. g.": "e.g.",
|
162 |
+
"e. g": "e.g.",
|
163 |
+
" ,": ",",
|
164 |
+
}
|
165 |
+
|
166 |
+
|
167 |
+
spell = SpellChecker()
|
168 |
+
|
169 |
+
|
170 |
+
def check_word_spelling(word: str) -> bool:
|
171 |
+
"""
|
172 |
+
check_word_spelling - check the spelling of a word
|
173 |
+
Args:
|
174 |
+
word (str): word to check
|
175 |
+
Returns:
|
176 |
+
bool: True if word is spelled correctly, False if not
|
177 |
+
"""
|
178 |
+
|
179 |
+
misspelled = spell.unknown([word])
|
180 |
+
|
181 |
+
return len(misspelled) == 0
|
182 |
+
|
183 |
+
|
184 |
+
def eval_and_replace(text: str, match_token: str = "- ") -> str:
|
185 |
+
"""
|
186 |
+
eval_and_replace - conditionally replace all instances of a substring in a string based on whether the eliminated substring results in a valid word
|
187 |
+
Args:
|
188 |
+
text (str): text to evaluate
|
189 |
+
match_token (str, optional): token to replace. Defaults to "- ".
|
190 |
+
Returns:
|
191 |
+
str: text with replaced tokens
|
192 |
+
"""
|
193 |
+
|
194 |
+
try:
|
195 |
+
if match_token not in text:
|
196 |
+
return text
|
197 |
+
else:
|
198 |
+
while True:
|
199 |
+
full_before_text = text.split(match_token, maxsplit=1)[0]
|
200 |
+
before_text = [
|
201 |
+
char for char in full_before_text.split()[-1] if char.isalpha()
|
202 |
+
]
|
203 |
+
before_text = "".join(before_text)
|
204 |
+
full_after_text = text.split(match_token, maxsplit=1)[-1]
|
205 |
+
after_text = [char for char in full_after_text.split()[0] if char.isalpha()]
|
206 |
+
after_text = "".join(after_text)
|
207 |
+
full_text = before_text + after_text
|
208 |
+
if check_word_spelling(full_text):
|
209 |
+
text = full_before_text + full_after_text
|
210 |
+
else:
|
211 |
+
text = full_before_text + " " + full_after_text
|
212 |
+
if match_token not in text:
|
213 |
+
break
|
214 |
+
except Exception as e:
|
215 |
+
logging.error(f"Error spell-checking OCR output, returning default text:\t{e}")
|
216 |
+
return text
|
217 |
+
|
218 |
+
|
219 |
+
def cleantxt_ocr(ugly_text, lower=False, lang: str = "en") -> str:
|
220 |
+
"""
|
221 |
+
cleantxt_ocr - clean text from OCR
|
222 |
+
Args:
|
223 |
+
ugly_text (str): text to clean
|
224 |
+
lower (bool, optional): _description_. Defaults to False.
|
225 |
+
lang (str, optional): _description_. Defaults to "en".
|
226 |
+
Returns:
|
227 |
+
str: cleaned text
|
228 |
+
"""
|
229 |
+
# a wrapper for clean text with options different than default
|
230 |
+
|
231 |
+
# https://pypi.org/project/clean-text/
|
232 |
+
cleaned_text = clean(
|
233 |
+
ugly_text,
|
234 |
+
fix_unicode=True, # fix various unicode errors
|
235 |
+
to_ascii=True, # transliterate to closest ASCII representation
|
236 |
+
lower=lower, # lowercase text
|
237 |
+
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
|
238 |
+
no_urls=True, # replace all URLs with a special token
|
239 |
+
no_emails=False, # replace all email addresses with a special token
|
240 |
+
no_phone_numbers=False, # replace all phone numbers with a special token
|
241 |
+
no_numbers=False, # replace all numbers with a special token
|
242 |
+
no_digits=False, # replace all digits with a special token
|
243 |
+
no_currency_symbols=False, # replace all currency symbols with a special token
|
244 |
+
no_punct=False, # remove punctuations
|
245 |
+
replace_with_punct="", # instead of removing punctuations you may replace them
|
246 |
+
replace_with_url="<URL>",
|
247 |
+
replace_with_email="<EMAIL>",
|
248 |
+
replace_with_phone_number="<PHONE>",
|
249 |
+
replace_with_number="<NUM>",
|
250 |
+
replace_with_digit="0",
|
251 |
+
replace_with_currency_symbol="<CUR>",
|
252 |
+
lang=lang, # set to 'de' for German special handling
|
253 |
+
)
|
254 |
+
|
255 |
+
return cleaned_text
|
256 |
+
|
257 |
+
|
258 |
+
def format_ocr_out(OCR_data):
|
259 |
+
|
260 |
+
if isinstance(OCR_data, list):
|
261 |
+
text = " ".join(OCR_data)
|
262 |
+
else:
|
263 |
+
text = str(OCR_data)
|
264 |
+
_clean = cleantxt_ocr(text)
|
265 |
+
return corr(_clean)
|
266 |
+
|
267 |
+
|
268 |
+
def postprocess(text: str) -> str:
|
269 |
+
"""to be used after recombining the lines"""
|
270 |
+
|
271 |
+
proc = corr(cleantxt_ocr(text))
|
272 |
+
|
273 |
+
for k, v in custom_replace_list.items():
|
274 |
+
proc = proc.replace(str(k), str(v))
|
275 |
+
|
276 |
+
proc = corr(proc)
|
277 |
+
|
278 |
+
for k, v in replace_corr_exceptions.items():
|
279 |
+
proc = proc.replace(str(k), str(v))
|
280 |
+
|
281 |
+
return eval_and_replace(proc)
|
282 |
+
|
283 |
+
|
284 |
+
def result2text(result, as_text=False):
|
285 |
+
"""Convert OCR result to text"""
|
286 |
+
|
287 |
+
full_doc = []
|
288 |
+
for i, page in enumerate(result.pages, start=1):
|
289 |
+
text = ""
|
290 |
+
for block in page.blocks:
|
291 |
+
text += "\n\t"
|
292 |
+
for line in block.lines:
|
293 |
+
for word in line.words:
|
294 |
+
# print(dir(word))
|
295 |
+
text += word.value + " "
|
296 |
+
full_doc.append(text)
|
297 |
+
|
298 |
+
return "\n".join(full_doc) if as_text else full_doc
|
299 |
+
|
300 |
+
|
301 |
+
def convert_PDF_to_Text(
|
302 |
+
PDF_file,
|
303 |
+
ocr_model=None,
|
304 |
+
max_pages: int = 20,
|
305 |
+
):
|
306 |
+
|
307 |
+
st = time.perf_counter()
|
308 |
+
PDF_file = Path(PDF_file)
|
309 |
+
ocr_model = ocr_predictor(pretrained=True) if ocr_model is None else ocr_model
|
310 |
+
logging.info(f"starting OCR on {PDF_file.name}")
|
311 |
+
doc = DocumentFile.from_pdf(PDF_file)
|
312 |
+
truncated = False
|
313 |
+
if len(doc) > max_pages:
|
314 |
+
logging.warning(
|
315 |
+
f"PDF has {len(doc)} pages, which is more than {max_pages}.. truncating"
|
316 |
+
)
|
317 |
+
doc = doc[:max_pages]
|
318 |
+
truncated = True
|
319 |
+
|
320 |
+
# Analyze
|
321 |
+
logging.info(f"running OCR on {len(doc)} pages")
|
322 |
+
result = ocr_model(doc)
|
323 |
+
raw_text = result2text(result)
|
324 |
+
proc_text = [format_ocr_out(r) for r in raw_text]
|
325 |
+
fin_text = [postprocess(t) for t in proc_text]
|
326 |
+
|
327 |
+
ocr_results = "\n\n".join(fin_text)
|
328 |
+
|
329 |
+
fn_rt = time.perf_counter() - st
|
330 |
+
|
331 |
+
logging.info("OCR complete")
|
332 |
+
|
333 |
+
results_dict = {
|
334 |
+
"num_pages": len(doc),
|
335 |
+
"runtime": round(fn_rt, 2),
|
336 |
+
"date": str(date.today()),
|
337 |
+
"converted_text": ocr_results,
|
338 |
+
"truncated": truncated,
|
339 |
+
"length": len(ocr_results),
|
340 |
+
}
|
341 |
+
|
342 |
+
return results_dict
|
343 |
+
|
344 |
+
|
345 |
+
# @title translation functions
|
346 |
+
|
347 |
+
lt = LibreTranslateAPI("https://translate.astian.org/")
|
348 |
+
|
349 |
+
|
350 |
+
def translate_text(text, source_l, target_l="en"):
|
351 |
+
|
352 |
+
return str(lt.translate(text, source_l, target_l))
|
353 |
+
|
354 |
+
|
355 |
+
def translate_doc(filepath, lang_start, lang_end="en", verbose=False):
|
356 |
+
"""translate a document from lang_start to lang_end
|
357 |
+
{'code': 'en', 'name': 'English'},
|
358 |
+
{'code': 'fr', 'name': 'French'},
|
359 |
+
{'code': 'de', 'name': 'German'},
|
360 |
+
{'code': 'it', 'name': 'Italian'},"""
|
361 |
+
|
362 |
+
src_folder = dirname(filepath)
|
363 |
+
src_folder = Path(src_folder)
|
364 |
+
trgt_folder = src_folder / f"translated_{lang_end}"
|
365 |
+
trgt_folder.mkdir(exist_ok=True)
|
366 |
+
with open(filepath, "r", encoding="utf-8", errors="ignore") as f:
|
367 |
+
foreign_t = f.readlines()
|
368 |
+
in_name = basename(filepath)
|
369 |
+
translated_doc = []
|
370 |
+
for line in tqdm(
|
371 |
+
foreign_t, total=len(foreign_t), desc="translating {}...".format(in_name[:10])
|
372 |
+
):
|
373 |
+
translated_line = translate_text(line, lang_start, lang_end)
|
374 |
+
translated_doc.append(translated_line)
|
375 |
+
t_out_name = "[To {}]".format(lang_end) + simple_rename(in_name) + ".txt"
|
376 |
+
out_path = join(trgt_folder, t_out_name)
|
377 |
+
with open(out_path, "w", encoding="utf-8", errors="ignore") as f_o:
|
378 |
+
f_o.writelines(translated_doc)
|
379 |
+
if verbose:
|
380 |
+
print("finished translating the document! - ", datetime.now())
|
381 |
+
return out_path
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.0.11
|
2 |
+
tiktoken
|
3 |
+
chromadb
|
4 |
+
langchain
|
5 |
+
unstructured
|
6 |
+
unstructured[local-inference]
|
7 |
+
transformers
|
8 |
+
torch
|
9 |
+
faiss-cpu
|
10 |
+
sentence-transformers
|
11 |
+
chromadb
|
12 |
+
bitsandbytes
|
13 |
+
accelerate
|
14 |
+
doctr
|