File size: 5,998 Bytes
2b89dc1
 
 
 
 
 
 
 
 
 
 
 
3d48fe6
2b89dc1
 
 
 
 
 
 
 
 
 
 
 
 
8fd5a3e
 
2b89dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f097af1
 
 
 
 
 
2b89dc1
 
 
 
 
 
f097af1
2b89dc1
 
 
 
 
 
 
56e215e
2b89dc1
 
 
 
 
167a25a
 
 
 
2b89dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03e0aa
8fd5a3e
 
 
a03e0aa
 
 
8fd5a3e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os 
import gradio as gr
import logging
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from langchain import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
from youtube_transcript_api import YouTubeTranscriptApi
import chatops 

logger = logging.getLogger(__name__)

DEVICE = 'cpu'
MAX_NEW_TOKENS = 4096
DEFAULT_TEMPERATURE = 0.1
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = 4000
DEFAULT_CHAR_LENGTH = 1000

def loading_file():
    return "Loading..."

def clear_chat():
    return []

def get_text_from_youtube_link(video_link,max_video_length=800):
    video_text = ""
    video_id = video_link.split("watch?v=")[1].split("&")[0]
    srt = YouTubeTranscriptApi.get_transcript(video_id)
    for text_data in srt:
        video_text = video_text + " " + text_data.get("text")
    if len(video_text) > max_video_length:
        return video_text[0:max_video_length]
    else:
        return video_text

def process_documents(documents,data_chunk=1500,chunk_overlap=100):
    text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
    texts = text_splitter.split_documents(documents)
    return texts

def process_youtube_link(link, document_name="youtube-content"):
    try:
        metadata = {"source": f"{document_name}.txt"}
        return [Document(page_content=get_text_from_youtube_link(video_link=link), metadata=metadata)]
    except Exception as err:
        logger.error(f'Error in reading document. {err}')


def youtube_chat(youtube_link,API_key,llm='HuggingFace',temperature=0.1,max_tokens=1096,char_length=1500):
    
    document  = process_youtube_link(link=youtube_link)
    embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE})
    texts = process_documents(documents=document)
    global vector_db
    vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
    global qa
    qa = RetrievalQA.from_chain_type(llm=chatops.chat_application(llm_service=llm,key=API_key,
                                                            temperature=temperature,
                                                            max_tokens=max_tokens
                                                        ),
                                chain_type='stuff',
                                retriever=vector_db.as_retriever(),
                                #  chain_type_kwargs=chain_type_kwargs,
                                return_source_documents=True
                            )
    return "Youtube link Processing completed ..."

##################################################
##################################################
################### GRADIO #######################
##################################################
##################################################

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>Chat with You Tube videos• OpenAI/HuggingFace</h1>
    <p style="text-align: center;">Upload a You tube Link, to create its captions and load them as embeddings <br />
    once status is ready, you can start asking questions about the content you uploaded.<br />
    The repo provides you an option to use HuggingFace/OpenAI as LLM's, make sure to add your API Key before proceding.
    </p>
</div>
"""

with gr.Blocks(css="""#chatbot {font-size: 14px;min-height: 300px;}""") as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
    
    with gr.Group():
        chatbot = gr.Chatbot(height=300)
    with gr.Row():
        question = gr.Textbox(label="Type your question !",lines=1).style(full_width=True)
        submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
        clean_chat_btn =  gr.Button("Delete Chat")

    with gr.Column():
        with gr.Box():
            LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Large Language Model Selection',info='LLM Service')
            API_key = gr.Textbox(label="Add API key", type="password",autofocus=True)
            with gr.Accordion(label='Advanced options', open=False):
                    max_new_tokens = gr.Slider(
                        label='Max new tokens',
                        minimum=2048,
                        maximum=MAX_NEW_TOKENS,
                        step=1,
                        value=DEFAULT_MAX_NEW_TOKENS,
                        )
                    temperature = gr.Slider(
                    label='Temperature',
                    minimum=0.1,
                    maximum=4.0,
                    step=0.1,
                    value=DEFAULT_TEMPERATURE,
                    )
                    char_length = gr.Slider(
                        label='Max Character',
                        minimum= DEFAULT_CHAR_LENGTH,
                        maximum = 5*DEFAULT_CHAR_LENGTH,
                        step = 500,
                        value= 1500
                    )

    with gr.Column():
            with gr.Box():
                youtube_link = gr.Textbox(label="Add your you tube Link",text_align='left',autofocus=True)
    with gr.Column():
        with gr.Box():
            load_youtube_bt = gr.Button("Process Youtube Link",).style(full_width = False)
            langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
    
    load_youtube_bt.click(youtube_chat,inputs= [youtube_link,API_key,LLM_option,temperature,max_new_tokens,char_length],outputs=[langchain_status], queue=False)  
    clean_chat_btn.click(clear_chat, [], chatbot)

demo.launch()