|
import time |
|
import gradio as gr |
|
import logging |
|
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.embeddings import SentenceTransformerEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain import HuggingFaceHub |
|
from langchain.chains import RetrievalQA |
|
from langchain.prompts import PromptTemplate |
|
from langchain.docstore.document import Document |
|
from youtube_transcript_api import YouTubeTranscriptApi |
|
import chatops |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
DEVICE = 'cpu' |
|
MAX_NEW_TOKENS = 4096 |
|
DEFAULT_TEMPERATURE = 0.1 |
|
DEFAULT_MAX_NEW_TOKENS = 2048 |
|
MAX_INPUT_TOKEN_LENGTH = 4000 |
|
DEFAULT_CHAR_LENGTH = 1000 |
|
|
|
def loading_file(): |
|
return "Loading..." |
|
|
|
def clear_chat(): |
|
return [] |
|
|
|
def get_text_from_youtube_link(video_link,max_video_length=800): |
|
video_text = "" |
|
video_id = video_link.split("watch?v=")[1].split("&")[0] |
|
srt = YouTubeTranscriptApi.get_transcript(video_id) |
|
for text_data in srt: |
|
video_text = video_text + " " + text_data.get("text") |
|
if len(video_text) > max_video_length: |
|
return video_text[0:max_video_length] |
|
else: |
|
return video_text |
|
|
|
def process_documents(documents,data_chunk=1500,chunk_overlap=100): |
|
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n') |
|
texts = text_splitter.split_documents(documents) |
|
return texts |
|
|
|
def process_youtube_link(link, document_name="youtube-content"): |
|
try: |
|
metadata = {"source": f"{document_name}.txt"} |
|
return [Document(page_content=get_text_from_youtube_link(video_link=link), metadata=metadata)] |
|
except Exception as err: |
|
logger.error(f'Error in reading document. {err}') |
|
|
|
|
|
def youtube_chat(youtube_link,API_key,llm='HuggingFace',temperature=0.1,max_tokens=1096,char_length=1500): |
|
|
|
document = process_youtube_link(link=youtube_link) |
|
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE}) |
|
texts = process_documents(documents=document) |
|
global vector_db |
|
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model) |
|
global qa |
|
|
|
if llm == 'HuggingFace': |
|
chat = chatops.get_hugging_face_model( |
|
model_id="tiiuae/falcon-7b-instruct", |
|
API_key=API_key, |
|
temperature=temperature, |
|
max_tokens=max_tokens |
|
) |
|
else: |
|
chat = chatops.get_openai_chat_model(API_key=API_key) |
|
|
|
qa = RetrievalQA.from_chain_type(llm=chat, |
|
chain_type='stuff', |
|
retriever=vector_db.as_retriever(), |
|
|
|
return_source_documents=True |
|
) |
|
return "Youtube link Processing completed ..." |
|
|
|
def infer(question, history): |
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Question in infer :",question) |
|
result = qa({"query": question}) |
|
matching_docs_score = vector_db.similarity_search_with_score(question) |
|
|
|
print(" Matching_doc ",matching_docs_score) |
|
|
|
return result["result"] |
|
|
|
def bot(history): |
|
response = infer(history[-1][0], history) |
|
history[-1][1] = "" |
|
|
|
for character in response: |
|
history[-1][1] += character |
|
time.sleep(0.05) |
|
yield history |
|
|
|
def add_text(history, text): |
|
history = history + [(text, None)] |
|
return history, "" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
css=""" |
|
#col-container {max-width: 1080px; margin-left: auto; margin-right: auto;} |
|
""" |
|
|
|
title = """ |
|
<div style="text-align: center;max-width: 1080px;"> |
|
<h1>Chat with Youtube Videos </h1> |
|
<p style="text-align: center;">Upload a youtube link of any lecture or video and you are able to ask QA as chatbot with the tool |
|
It gives you option to use HuggingFace/OpenAI as LLM's, make sure to add your key. |
|
</p> |
|
</div> |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Row(): |
|
with gr.Column(elem_id="col-container"): |
|
gr.HTML(title) |
|
|
|
with gr.Group(): |
|
chatbot = gr.Chatbot(height=100) |
|
|
|
with gr.Row(): |
|
question = gr.Textbox(label="Type your question !",lines=1).style(full_width=True) |
|
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1) |
|
clean_chat_btn = gr.Button("Delete Chat") |
|
|
|
with gr.Column(): |
|
with gr.Box(): |
|
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Large Language Model Selection',info='LLM Service') |
|
API_key = gr.Textbox(label="Add API key", type="password",autofocus=True) |
|
with gr.Accordion(label='Advanced options', open=False): |
|
max_new_tokens = gr.Slider( |
|
label='Max new tokens', |
|
minimum=2048, |
|
maximum=MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
) |
|
temperature = gr.Slider(label='Temperature',minimum=0.1,maximum=4.0,step=0.1,value=DEFAULT_TEMPERATURE,) |
|
char_length = gr.Slider(label='Max Character', |
|
minimum= DEFAULT_CHAR_LENGTH, |
|
maximum = 5*DEFAULT_CHAR_LENGTH, |
|
step = 500,value= 1500 |
|
) |
|
|
|
with gr.Column(): |
|
with gr.Box(): |
|
youtube_link = gr.Textbox(label="Add your you tube Link",text_align='left',autofocus=True) |
|
with gr.Row(): |
|
load_youtube_bt = gr.Button("Process Youtube Link",).style(full_width = False) |
|
langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False) |
|
|
|
|
|
load_youtube_bt.click(youtube_chat,inputs= [youtube_link,API_key,LLM_option,temperature,max_new_tokens,char_length],outputs=[langchain_status], queue=False) |
|
clean_chat_btn.click(clear_chat, [], chatbot) |
|
|
|
question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot) |
|
submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot) |
|
|
|
demo.launch() |