Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,19 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
#
|
|
|
|
|
|
|
4 |
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
|
5 |
model2 = gr.load("models/Purz/face-projection")
|
6 |
|
|
|
|
|
|
|
|
|
7 |
def generate_tutor_output(subject, difficulty, student_input):
|
8 |
prompt = f"""
|
9 |
You are an expert tutor in {subject} at the {difficulty} level.
|
@@ -17,33 +27,50 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
17 |
Format your response as a JSON object with keys: "lesson", "question", "feedback"
|
18 |
"""
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
image = model2.generate({"prompt": topic})
|
34 |
else:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Set up the Gradio interface
|
41 |
with gr.Blocks() as demo:
|
42 |
-
gr.Markdown("# 🎓 Your AI Tutor")
|
43 |
-
|
|
|
44 |
with gr.Row():
|
45 |
with gr.Column(scale=2):
|
46 |
-
# Input fields for subject, difficulty, and student input
|
47 |
subject = gr.Dropdown(
|
48 |
["Math", "Science", "History", "Literature", "Code", "AI"],
|
49 |
label="Subject",
|
@@ -59,7 +86,7 @@ with gr.Blocks() as demo:
|
|
59 |
label="Your Input",
|
60 |
info="Enter the topic you want to learn"
|
61 |
)
|
62 |
-
|
63 |
|
64 |
with gr.Column(scale=3):
|
65 |
# Output fields for lesson, question, and feedback
|
@@ -67,42 +94,57 @@ with gr.Blocks() as demo:
|
|
67 |
question_output = gr.Markdown(label="Comprehension Question")
|
68 |
feedback_output = gr.Markdown(label="Feedback")
|
69 |
|
70 |
-
#
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
gr.Markdown("""
|
79 |
### How to Use
|
80 |
-
1. Select a subject
|
81 |
-
2.
|
82 |
-
3.
|
83 |
-
4. Click 'Generate Lesson' to receive a personalized lesson, question, and feedback.
|
84 |
-
5. After generating the lesson, you can click 'Generate Visual Output' to create a related visual representation.
|
85 |
-
6. Review the AI-generated content to enhance your learning.
|
86 |
""")
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
inputs=[subject, difficulty, student_input],
|
98 |
-
outputs=[lesson_output, question_output, feedback_output
|
99 |
)
|
100 |
-
|
101 |
-
# Generate Visual
|
102 |
-
|
103 |
-
fn=
|
104 |
-
inputs=[
|
105 |
-
outputs=
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from groq import Groq
|
3 |
+
import os
|
4 |
+
import threading # Import threading module
|
5 |
|
6 |
+
# Initialize Groq client with your API key
|
7 |
+
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
8 |
+
|
9 |
+
# Load Text-to-Image Models
|
10 |
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
|
11 |
model2 = gr.load("models/Purz/face-projection")
|
12 |
|
13 |
+
# Stop event for threading (image generation)
|
14 |
+
stop_event = threading.Event()
|
15 |
+
|
16 |
+
# Function to generate tutor output (lesson, question, feedback)
|
17 |
def generate_tutor_output(subject, difficulty, student_input):
|
18 |
prompt = f"""
|
19 |
You are an expert tutor in {subject} at the {difficulty} level.
|
|
|
27 |
Format your response as a JSON object with keys: "lesson", "question", "feedback"
|
28 |
"""
|
29 |
|
30 |
+
completion = client.chat.completions.create(
|
31 |
+
messages=[{
|
32 |
+
"role": "system",
|
33 |
+
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
|
34 |
+
}, {
|
35 |
+
"role": "user",
|
36 |
+
"content": prompt,
|
37 |
+
}],
|
38 |
+
model="mixtral-8x7b-32768", # Model for text generation
|
39 |
+
max_tokens=1000,
|
40 |
+
)
|
41 |
+
|
42 |
+
return completion.choices[0].message.content
|
43 |
+
|
44 |
+
# Function to generate images based on model selection
|
45 |
+
def generate_images(text, selected_model):
|
46 |
+
stop_event.clear()
|
47 |
|
48 |
+
if selected_model == "Model 1 (Turbo Realism)":
|
49 |
+
model = model1
|
50 |
+
elif selected_model == "Model 2 (Face Projection)":
|
51 |
+
model = model2
|
|
|
52 |
else:
|
53 |
+
return ["Invalid model selection."] * 3
|
54 |
+
|
55 |
+
results = []
|
56 |
+
for i in range(3):
|
57 |
+
if stop_event.is_set():
|
58 |
+
return ["Image generation stopped by user."] * 3
|
59 |
+
|
60 |
+
modified_text = f"{text} variation {i+1}"
|
61 |
+
result = model(modified_text)
|
62 |
+
results.append(result)
|
63 |
+
|
64 |
+
return results
|
65 |
|
66 |
# Set up the Gradio interface
|
67 |
with gr.Blocks() as demo:
|
68 |
+
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
|
69 |
+
|
70 |
+
# Section for generating Text-based output (lesson, question, feedback)
|
71 |
with gr.Row():
|
72 |
with gr.Column(scale=2):
|
73 |
+
# Input fields for subject, difficulty, and student input for textual output
|
74 |
subject = gr.Dropdown(
|
75 |
["Math", "Science", "History", "Literature", "Code", "AI"],
|
76 |
label="Subject",
|
|
|
86 |
label="Your Input",
|
87 |
info="Enter the topic you want to learn"
|
88 |
)
|
89 |
+
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
|
90 |
|
91 |
with gr.Column(scale=3):
|
92 |
# Output fields for lesson, question, and feedback
|
|
|
94 |
question_output = gr.Markdown(label="Comprehension Question")
|
95 |
feedback_output = gr.Markdown(label="Feedback")
|
96 |
|
97 |
+
# Section for generating Visual output
|
98 |
with gr.Row():
|
99 |
+
with gr.Column(scale=2):
|
100 |
+
# Input fields for text and model selection for image generation
|
101 |
+
model_selector = gr.Radio(
|
102 |
+
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
|
103 |
+
label="Select Image Generation Model",
|
104 |
+
value="Model 1 (Turbo Realism)"
|
105 |
+
)
|
106 |
+
submit_button_visual = gr.Button("Generate Visuals", variant="primary")
|
107 |
+
|
108 |
+
with gr.Column(scale=3):
|
109 |
+
# Output fields for generated images
|
110 |
+
output1 = gr.Image(label="Generated Image 1")
|
111 |
+
output2 = gr.Image(label="Generated Image 2")
|
112 |
+
output3 = gr.Image(label="Generated Image 3")
|
113 |
+
|
114 |
gr.Markdown("""
|
115 |
### How to Use
|
116 |
+
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback.
|
117 |
+
2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic.
|
118 |
+
3. Review the AI-generated content to enhance your learning experience!
|
|
|
|
|
|
|
119 |
""")
|
120 |
+
|
121 |
+
def process_output_text(subject, difficulty, student_input):
|
122 |
+
try:
|
123 |
+
tutor_output = generate_tutor_output(subject, difficulty, student_input)
|
124 |
+
parsed = eval(tutor_output) # Convert string to dictionary
|
125 |
+
return parsed["lesson"], parsed["question"], parsed["feedback"]
|
126 |
+
except:
|
127 |
+
return "Error parsing output", "No question available", "No feedback available"
|
128 |
+
|
129 |
+
def process_output_visual(text, selected_model):
|
130 |
+
try:
|
131 |
+
images = generate_images(text, selected_model) # Generate images
|
132 |
+
return images[0], images[1], images[2]
|
133 |
+
except:
|
134 |
+
return None, None, None
|
135 |
+
|
136 |
+
# Generate Text-based Output
|
137 |
+
submit_button_text.click(
|
138 |
+
fn=process_output_text,
|
139 |
inputs=[subject, difficulty, student_input],
|
140 |
+
outputs=[lesson_output, question_output, feedback_output]
|
141 |
)
|
142 |
+
|
143 |
+
# Generate Visual Output
|
144 |
+
submit_button_visual.click(
|
145 |
+
fn=process_output_visual,
|
146 |
+
inputs=[student_input, model_selector],
|
147 |
+
outputs=[output1, output2, output3]
|
148 |
)
|
149 |
|
150 |
if __name__ == "__main__":
|