Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
from groq import Groq
|
3 |
import os
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import numpy as np
|
6 |
|
7 |
# Initialize Groq client with your API key
|
8 |
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def generate_tutor_output(subject, difficulty, student_input):
|
11 |
prompt = f"""
|
12 |
You are an expert tutor in {subject} at the {difficulty} level.
|
@@ -37,28 +43,31 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
37 |
|
38 |
return completion.choices[0].message.content
|
39 |
|
40 |
-
# Function to generate
|
41 |
-
def
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
# Set up the Gradio interface
|
60 |
with gr.Blocks() as demo:
|
61 |
-
gr.Markdown("# 🎓 Your AI Tutor")
|
62 |
|
63 |
with gr.Row():
|
64 |
with gr.Column(scale=2):
|
@@ -78,38 +87,46 @@ with gr.Blocks() as demo:
|
|
78 |
label="Your Input",
|
79 |
info="Enter the topic you want to learn"
|
80 |
)
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
with gr.Column(scale=3):
|
84 |
-
# Output fields for lesson, question, and
|
85 |
lesson_output = gr.Markdown(label="Lesson")
|
86 |
question_output = gr.Markdown(label="Comprehension Question")
|
87 |
feedback_output = gr.Markdown(label="Feedback")
|
88 |
-
|
|
|
|
|
89 |
|
90 |
gr.Markdown("""
|
91 |
### How to Use
|
92 |
1. Select a subject from the dropdown.
|
93 |
2. Choose your difficulty level.
|
94 |
3. Enter the topic or question you'd like to explore.
|
95 |
-
4.
|
96 |
-
5.
|
97 |
6. Review the AI-generated content to enhance your learning.
|
98 |
7. Feel free to ask follow-up questions or explore new topics!
|
99 |
""")
|
100 |
|
101 |
-
def process_output(
|
102 |
try:
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
106 |
except:
|
107 |
-
return "Error parsing output", "No question available", "No feedback available", None
|
108 |
|
109 |
submit_button.click(
|
110 |
-
fn=
|
111 |
-
inputs=[subject, difficulty, student_input],
|
112 |
-
outputs=[lesson_output, question_output, feedback_output,
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from groq import Groq
|
3 |
import os
|
|
|
|
|
4 |
|
5 |
# Initialize Groq client with your API key
|
6 |
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
7 |
|
8 |
+
# Load Text-to-Image Models
|
9 |
+
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
|
10 |
+
model2 = gr.load("models/Purz/face-projection")
|
11 |
+
|
12 |
+
# Stop event for threading (image generation)
|
13 |
+
stop_event = threading.Event()
|
14 |
+
|
15 |
+
# Function to generate tutor output (lesson, question, feedback)
|
16 |
def generate_tutor_output(subject, difficulty, student_input):
|
17 |
prompt = f"""
|
18 |
You are an expert tutor in {subject} at the {difficulty} level.
|
|
|
43 |
|
44 |
return completion.choices[0].message.content
|
45 |
|
46 |
+
# Function to generate images based on model selection
|
47 |
+
def generate_images(text, selected_model):
|
48 |
+
stop_event.clear()
|
49 |
+
|
50 |
+
if selected_model == "Model 1 (Turbo Realism)":
|
51 |
+
model = model1
|
52 |
+
elif selected_model == "Model 2 (Face Projection)":
|
53 |
+
model = model2
|
54 |
+
else:
|
55 |
+
return ["Invalid model selection."] * 3
|
56 |
+
|
57 |
+
results = []
|
58 |
+
for i in range(3):
|
59 |
+
if stop_event.is_set():
|
60 |
+
return ["Image generation stopped by user."] * 3
|
61 |
+
|
62 |
+
modified_text = f"{text} variation {i+1}"
|
63 |
+
result = model(modified_text)
|
64 |
+
results.append(result)
|
65 |
+
|
66 |
+
return results
|
67 |
|
68 |
# Set up the Gradio interface
|
69 |
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
|
71 |
|
72 |
with gr.Row():
|
73 |
with gr.Column(scale=2):
|
|
|
87 |
label="Your Input",
|
88 |
info="Enter the topic you want to learn"
|
89 |
)
|
90 |
+
model_selector = gr.Radio(
|
91 |
+
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
|
92 |
+
label="Select Image Generation Model",
|
93 |
+
value="Model 1 (Turbo Realism)"
|
94 |
+
)
|
95 |
+
submit_button = gr.Button("Generate Lesson & Images", variant="primary")
|
96 |
|
97 |
with gr.Column(scale=3):
|
98 |
+
# Output fields for lesson, question, feedback, and images
|
99 |
lesson_output = gr.Markdown(label="Lesson")
|
100 |
question_output = gr.Markdown(label="Comprehension Question")
|
101 |
feedback_output = gr.Markdown(label="Feedback")
|
102 |
+
output1 = gr.Image(label="Generated Image 1")
|
103 |
+
output2 = gr.Image(label="Generated Image 2")
|
104 |
+
output3 = gr.Image(label="Generated Image 3")
|
105 |
|
106 |
gr.Markdown("""
|
107 |
### How to Use
|
108 |
1. Select a subject from the dropdown.
|
109 |
2. Choose your difficulty level.
|
110 |
3. Enter the topic or question you'd like to explore.
|
111 |
+
4. Choose the model for image generation.
|
112 |
+
5. Click 'Generate Lesson & Images' to receive a personalized lesson, question, feedback, and images.
|
113 |
6. Review the AI-generated content to enhance your learning.
|
114 |
7. Feel free to ask follow-up questions or explore new topics!
|
115 |
""")
|
116 |
|
117 |
+
def process_output(subject, difficulty, student_input, selected_model):
|
118 |
try:
|
119 |
+
tutor_output = generate_tutor_output(subject, difficulty, student_input)
|
120 |
+
parsed = eval(tutor_output) # Convert string to dictionary
|
121 |
+
images = generate_images(student_input, selected_model) # Generate images
|
122 |
+
return parsed["lesson"], parsed["question"], parsed["feedback"], images[0], images[1], images[2]
|
123 |
except:
|
124 |
+
return "Error parsing output", "No question available", "No feedback available", None, None, None
|
125 |
|
126 |
submit_button.click(
|
127 |
+
fn=process_output,
|
128 |
+
inputs=[subject, difficulty, student_input, model_selector],
|
129 |
+
outputs=[lesson_output, question_output, feedback_output, output1, output2, output3]
|
130 |
)
|
131 |
|
132 |
if __name__ == "__main__":
|