Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from groq import Groq
|
3 |
import os
|
4 |
-
import requests # For DeepAI API
|
5 |
|
6 |
-
# Initialize Groq client
|
7 |
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
8 |
|
9 |
-
# Function to generate image from DeepAI API
|
10 |
-
def generate_visual_answer(prompt):
|
11 |
-
# Replace with DeepAI image generation API URL
|
12 |
-
url = "https://api.deepai.org/api/text2img"
|
13 |
-
response = requests.post(
|
14 |
-
url,
|
15 |
-
data={'text': prompt}, # The prompt will be the text description for image generation
|
16 |
-
headers={'api-key': os.environ["DEEP_AI_API_KEY"]} # Use DeepAI's API key here
|
17 |
-
)
|
18 |
-
if response.status_code == 200:
|
19 |
-
image_url = response.json()['output_url'] # URL for the generated image
|
20 |
-
return image_url
|
21 |
-
else:
|
22 |
-
return "Error generating image"
|
23 |
-
|
24 |
def generate_tutor_output(subject, difficulty, student_input):
|
|
|
25 |
prompt = f"""
|
26 |
You are an expert tutor in {subject} at the {difficulty} level.
|
27 |
The student has provided the following input: "{student_input}"
|
@@ -33,7 +18,8 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
33 |
|
34 |
Format your response as a JSON object with keys: "lesson", "question", "feedback"
|
35 |
"""
|
36 |
-
|
|
|
37 |
completion = client.chat.completions.create(
|
38 |
messages=[
|
39 |
{
|
@@ -45,17 +31,20 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
45 |
"content": prompt,
|
46 |
}
|
47 |
],
|
48 |
-
model="mixtral-8x7b-32768",
|
49 |
max_tokens=1000,
|
50 |
)
|
51 |
-
|
|
|
52 |
return completion.choices[0].message.content
|
53 |
|
|
|
54 |
with gr.Blocks() as demo:
|
55 |
-
gr.Markdown("# 🎓 Your AI Tutor
|
56 |
|
57 |
with gr.Row():
|
58 |
with gr.Column(scale=2):
|
|
|
59 |
subject = gr.Dropdown(
|
60 |
["Math", "Science", "History", "Literature", "Code", "AI"],
|
61 |
label="Subject",
|
@@ -74,33 +63,32 @@ with gr.Blocks() as demo:
|
|
74 |
submit_button = gr.Button("Generate Lesson", variant="primary")
|
75 |
|
76 |
with gr.Column(scale=3):
|
|
|
77 |
lesson_output = gr.Markdown(label="Lesson")
|
78 |
question_output = gr.Markdown(label="Comprehension Question")
|
79 |
feedback_output = gr.Markdown(label="Feedback")
|
80 |
-
image_output = gr.Image(label="Visual Answer", elem_id="image-output")
|
81 |
|
82 |
gr.Markdown("""
|
83 |
### How to Use
|
84 |
1. Select a subject from the dropdown.
|
85 |
2. Choose your difficulty level.
|
86 |
3. Enter the topic or question you'd like to explore.
|
87 |
-
4. Click 'Generate Lesson' to receive a personalized lesson, question,
|
88 |
5. Review the AI-generated content to enhance your learning.
|
89 |
6. Feel free to ask follow-up questions or explore new topics!
|
90 |
""")
|
91 |
|
92 |
-
def process_output(output
|
93 |
try:
|
94 |
-
parsed = eval(output)
|
95 |
-
|
96 |
-
return parsed["lesson"], parsed["question"], parsed["feedback"], visual_answer
|
97 |
except:
|
98 |
-
return "Error parsing output", "No question available", "No feedback available"
|
99 |
|
100 |
submit_button.click(
|
101 |
-
fn=lambda s, d, i: process_output(generate_tutor_output(s, d, i)
|
102 |
inputs=[subject, difficulty, student_input],
|
103 |
-
outputs=[lesson_output, question_output, feedback_output
|
104 |
)
|
105 |
|
106 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from groq import Groq
|
3 |
import os
|
|
|
4 |
|
5 |
+
# Initialize Groq client with your API key
|
6 |
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def generate_tutor_output(subject, difficulty, student_input):
|
9 |
+
# Construct the prompt for text generation
|
10 |
prompt = f"""
|
11 |
You are an expert tutor in {subject} at the {difficulty} level.
|
12 |
The student has provided the following input: "{student_input}"
|
|
|
18 |
|
19 |
Format your response as a JSON object with keys: "lesson", "question", "feedback"
|
20 |
"""
|
21 |
+
|
22 |
+
# Generate completion from the Groq API
|
23 |
completion = client.chat.completions.create(
|
24 |
messages=[
|
25 |
{
|
|
|
31 |
"content": prompt,
|
32 |
}
|
33 |
],
|
34 |
+
model="mixtral-8x7b-32768", # Model for text generation
|
35 |
max_tokens=1000,
|
36 |
)
|
37 |
+
|
38 |
+
# Return the generated content (lesson, question, feedback)
|
39 |
return completion.choices[0].message.content
|
40 |
|
41 |
+
# Set up the Gradio interface
|
42 |
with gr.Blocks() as demo:
|
43 |
+
gr.Markdown("# 🎓 Your AI Tutor")
|
44 |
|
45 |
with gr.Row():
|
46 |
with gr.Column(scale=2):
|
47 |
+
# Input fields for subject, difficulty, and student input
|
48 |
subject = gr.Dropdown(
|
49 |
["Math", "Science", "History", "Literature", "Code", "AI"],
|
50 |
label="Subject",
|
|
|
63 |
submit_button = gr.Button("Generate Lesson", variant="primary")
|
64 |
|
65 |
with gr.Column(scale=3):
|
66 |
+
# Output fields for lesson, question, and feedback
|
67 |
lesson_output = gr.Markdown(label="Lesson")
|
68 |
question_output = gr.Markdown(label="Comprehension Question")
|
69 |
feedback_output = gr.Markdown(label="Feedback")
|
|
|
70 |
|
71 |
gr.Markdown("""
|
72 |
### How to Use
|
73 |
1. Select a subject from the dropdown.
|
74 |
2. Choose your difficulty level.
|
75 |
3. Enter the topic or question you'd like to explore.
|
76 |
+
4. Click 'Generate Lesson' to receive a personalized lesson, question, and feedback.
|
77 |
5. Review the AI-generated content to enhance your learning.
|
78 |
6. Feel free to ask follow-up questions or explore new topics!
|
79 |
""")
|
80 |
|
81 |
+
def process_output(output):
|
82 |
try:
|
83 |
+
parsed = eval(output) # Convert string to dictionary
|
84 |
+
return parsed["lesson"], parsed["question"], parsed["feedback"]
|
|
|
85 |
except:
|
86 |
+
return "Error parsing output", "No question available", "No feedback available"
|
87 |
|
88 |
submit_button.click(
|
89 |
+
fn=lambda s, d, i: process_output(generate_tutor_output(s, d, i)),
|
90 |
inputs=[subject, difficulty, student_input],
|
91 |
+
outputs=[lesson_output, question_output, feedback_output]
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|