import gradio as gr from groq import Groq import os import threading # Import threading module # Initialize Groq client with your API key client = Groq(api_key=os.environ["GROQ_API_KEY"]) # Load Text-to-Image Models model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA") model2 = gr.load("models/Purz/face-projection") # Stop event for threading (image generation) stop_event = threading.Event() # Function to generate tutor output (lesson, question, feedback) def generate_tutor_output(subject, difficulty, student_input): prompt = f""" You are an expert tutor in {subject} at the {difficulty} level. The student has provided the following input: "{student_input}" Please generate: 1. A brief, engaging lesson on the topic (2-3 paragraphs) 2. A thought-provoking question to check understanding 3. Constructive feedback on the student's input Format your response as a JSON object with keys: "lesson", "question", "feedback" """ completion = client.chat.completions.create( messages=[{ "role": "system", "content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students." }, { "role": "user", "content": prompt, }], model="mixtral-8x7b-32768", # Model for text generation max_tokens=1000, ) return completion.choices[0].message.content # Function to generate images based on model selection def generate_images(text, selected_model): stop_event.clear() if selected_model == "Model 1 (Turbo Realism)": model = model1 elif selected_model == "Model 2 (Face Projection)": model = model2 else: return ["Invalid model selection."] * 3 results = [] for i in range(3): if stop_event.is_set(): return ["Image generation stopped by user."] * 3 modified_text = f"{text} variation {i+1}" result = model(modified_text) results.append(result) return results # Set up the Gradio interface with gr.Blocks() as demo: gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images") # Section for generating Text-based output (lesson, question, feedback) with gr.Row(): with gr.Column(scale=2): # Input fields for subject, difficulty, and student input for textual output subject = gr.Dropdown( ["Math", "Science", "History", "Literature", "Code", "AI"], label="Subject", info="Choose the subject of your lesson" ) difficulty = gr.Radio( ["Beginner", "Intermediate", "Advanced"], label="Difficulty Level", info="Select your proficiency level" ) student_input = gr.Textbox( placeholder="Type your query here...", label="Your Input", info="Enter the topic you want to learn" ) submit_button_text = gr.Button("Generate Lesson & Question", variant="primary") with gr.Column(scale=3): # Output fields for lesson, question, and feedback lesson_output = gr.Markdown(label="Lesson") question_output = gr.Markdown(label="Comprehension Question") feedback_output = gr.Markdown(label="Feedback") # Section for generating Visual output with gr.Row(): with gr.Column(scale=2): # Input fields for text and model selection for image generation model_selector = gr.Radio( ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"], label="Select Image Generation Model", value="Model 1 (Turbo Realism)" ) submit_button_visual = gr.Button("Generate Visuals", variant="primary") with gr.Column(scale=3): # Output fields for generated images output1 = gr.Image(label="Generated Image 1") output2 = gr.Image(label="Generated Image 2") output3 = gr.Image(label="Generated Image 3") gr.Markdown(""" ### How to Use 1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback. 2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic. 3. Review the AI-generated content to enhance your learning experience! """) def process_output_text(subject, difficulty, student_input): try: tutor_output = generate_tutor_output(subject, difficulty, student_input) parsed = eval(tutor_output) # Convert string to dictionary return parsed["lesson"], parsed["question"], parsed["feedback"] except: return "Error parsing output", "No question available", "No feedback available" def process_output_visual(text, selected_model): try: images = generate_images(text, selected_model) # Generate images return images[0], images[1], images[2] except: return None, None, None # Generate Text-based Output submit_button_text.click( fn=process_output_text, inputs=[subject, difficulty, student_input], outputs=[lesson_output, question_output, feedback_output] ) # Generate Visual Output submit_button_visual.click( fn=process_output_visual, inputs=[student_input, model_selector], outputs=[output1, output2, output3] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)