SameerArz commited on
Commit
3991bdc
·
verified ·
1 Parent(s): 8fe789c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -56
app.py CHANGED
@@ -1,17 +1,31 @@
 
1
  import gradio as gr
2
  from groq import Groq
3
  import os
4
- import threading # Import threading module
 
 
5
 
6
- # Initialize Groq client with your API key
7
- client = Groq(api_key=os.environ["GROQ_API_KEY"])
 
8
 
9
- # Load Text-to-Image Models
10
- model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
11
- model2 = gr.load("models/Purz/face-projection")
12
 
13
- # Stop event for threading (image generation)
14
- stop_event = threading.Event()
 
 
 
 
 
 
 
 
 
 
15
 
16
  # Function to generate tutor output (lesson, question, feedback)
17
  def generate_tutor_output(subject, difficulty, student_input):
@@ -35,117 +49,102 @@ def generate_tutor_output(subject, difficulty, student_input):
35
  "role": "user",
36
  "content": prompt,
37
  }],
38
- model="mixtral-8x7b-32768", # Model for text generation
39
  max_tokens=1000,
40
  )
41
-
42
  return completion.choices[0].message.content
43
 
44
- # Function to generate images based on model selection
45
  def generate_images(text, selected_model):
46
- stop_event.clear()
47
-
48
  if selected_model == "Model 1 (Turbo Realism)":
49
- model = model1
50
  elif selected_model == "Model 2 (Face Projection)":
51
- model = model2
52
  else:
53
  return ["Invalid model selection."] * 3
54
 
55
  results = []
56
  for i in range(3):
57
- if stop_event.is_set():
58
- return ["Image generation stopped by user."] * 3
59
-
60
- modified_text = f"{text} variation {i+1}"
61
- result = model(modified_text)
62
- results.append(result)
63
-
64
  return results
65
 
66
- # Set up the Gradio interface
67
- with gr.Blocks() as demo:
68
  gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
69
 
70
- # Section for generating Text-based output (lesson, question, feedback)
71
  with gr.Row():
72
  with gr.Column(scale=2):
73
- # Input fields for subject, difficulty, and student input for textual output
74
  subject = gr.Dropdown(
75
- ["Math", "Science", "History", "Literature", "Code", "AI"],
76
- label="Subject",
77
  info="Choose the subject of your lesson"
78
  )
79
  difficulty = gr.Radio(
80
- ["Beginner", "Intermediate", "Advanced"],
81
- label="Difficulty Level",
82
  info="Select your proficiency level"
83
  )
84
  student_input = gr.Textbox(
85
- placeholder="Type your query here...",
86
- label="Your Input",
87
  info="Enter the topic you want to learn"
88
  )
89
  submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
90
-
91
  with gr.Column(scale=3):
92
- # Output fields for lesson, question, and feedback
93
  lesson_output = gr.Markdown(label="Lesson")
94
  question_output = gr.Markdown(label="Comprehension Question")
95
  feedback_output = gr.Markdown(label="Feedback")
96
-
97
- # Section for generating Visual output
98
  with gr.Row():
99
  with gr.Column(scale=2):
100
- # Input fields for text and model selection for image generation
101
  model_selector = gr.Radio(
102
  ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
103
  label="Select Image Generation Model",
104
  value="Model 1 (Turbo Realism)"
105
  )
106
  submit_button_visual = gr.Button("Generate Visuals", variant="primary")
107
-
108
  with gr.Column(scale=3):
109
- # Output fields for generated images
110
  output1 = gr.Image(label="Generated Image 1")
111
  output2 = gr.Image(label="Generated Image 2")
112
  output3 = gr.Image(label="Generated Image 3")
113
-
114
  gr.Markdown("""
115
  ### How to Use
116
- 1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback.
117
- 2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic.
118
- 3. Review the AI-generated content to enhance your learning experience!
119
  """)
120
-
121
  def process_output_text(subject, difficulty, student_input):
122
  try:
123
  tutor_output = generate_tutor_output(subject, difficulty, student_input)
124
- parsed = eval(tutor_output) # Convert string to dictionary
125
  return parsed["lesson"], parsed["question"], parsed["feedback"]
126
- except:
127
- return "Error parsing output", "No question available", "No feedback available"
128
-
129
  def process_output_visual(text, selected_model):
130
  try:
131
- images = generate_images(text, selected_model) # Generate images
132
  return images[0], images[1], images[2]
133
- except:
134
  return None, None, None
135
-
136
- # Generate Text-based Output
137
  submit_button_text.click(
138
  fn=process_output_text,
139
  inputs=[subject, difficulty, student_input],
140
  outputs=[lesson_output, question_output, feedback_output]
141
  )
142
-
143
- # Generate Visual Output
144
  submit_button_visual.click(
145
  fn=process_output_visual,
146
  inputs=[student_input, model_selector],
147
  outputs=[output1, output2, output3]
148
  )
149
 
150
- if __name__ == "__main__":
151
- demo.launch(server_name="0.0.0.0", server_port=7860)
 
1
+ # app.py
2
  import gradio as gr
3
  from groq import Groq
4
  import os
5
+ import json
6
+ import torch
7
+ from diffusers import AutoPipelineForText2Image
8
 
9
+ # Get API keys from environment variables (set in Space settings)
10
+ GROQ_API_KEY = os.getenv("GROQ_API_KEY")
11
+ HF_TOKEN = os.getenv("HF_TOKEN")
12
 
13
+ # Check if keys are provided
14
+ if not GROQ_API_KEY or not HF_TOKEN:
15
+ raise ValueError("Please set GROQ_API_KEY and HF_TOKEN in the Space settings under 'Variables'.")
16
 
17
+ # Initialize Groq client
18
+ client = Groq(api_key=GROQ_API_KEY)
19
+
20
+ # Set up device and image generation pipeline
21
+ device = "cuda" if torch.cuda.is_available() else "cpu"
22
+ pipeline = AutoPipelineForText2Image.from_pretrained(
23
+ "black-forest-labs/FLUX.1-dev",
24
+ torch_dtype=torch.bfloat16,
25
+ use_auth_token=HF_TOKEN # Authenticate directly with HF token
26
+ ).to(device)
27
+ pipeline.load_lora_weights("Purz/face-projection", weight_name="purz-f4c3_p40j3ct10n.safetensors")
28
+ pipeline.enable_model_cpu_offload() # Optimize memory usage
29
 
30
  # Function to generate tutor output (lesson, question, feedback)
31
  def generate_tutor_output(subject, difficulty, student_input):
 
49
  "role": "user",
50
  "content": prompt,
51
  }],
52
+ model="mixtral-8x7b-32768",
53
  max_tokens=1000,
54
  )
 
55
  return completion.choices[0].message.content
56
 
57
+ # Function to generate images
58
  def generate_images(text, selected_model):
 
 
59
  if selected_model == "Model 1 (Turbo Realism)":
60
+ prompt_prefix = "realistic, high detail, "
61
  elif selected_model == "Model 2 (Face Projection)":
62
+ prompt_prefix = "f4c3_p40j3ct10n, projection on a face, "
63
  else:
64
  return ["Invalid model selection."] * 3
65
 
66
  results = []
67
  for i in range(3):
68
+ modified_text = f"{prompt_prefix}{text} variation {i+1}"
69
+ image = pipeline(modified_text, num_inference_steps=20).images[0] # Faster inference
70
+ results.append(image)
 
 
 
 
71
  return results
72
 
73
+ # Gradio interface
74
+ with gr.Blocks(title="AI Tutor with Visuals") as demo:
75
  gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
76
 
 
77
  with gr.Row():
78
  with gr.Column(scale=2):
 
79
  subject = gr.Dropdown(
80
+ ["Math", "Science", "History", "Literature", "Code", "AI"],
81
+ label="Subject",
82
  info="Choose the subject of your lesson"
83
  )
84
  difficulty = gr.Radio(
85
+ ["Beginner", "Intermediate", "Advanced"],
86
+ label="Difficulty Level",
87
  info="Select your proficiency level"
88
  )
89
  student_input = gr.Textbox(
90
+ placeholder="Type your query here...",
91
+ label="Your Input",
92
  info="Enter the topic you want to learn"
93
  )
94
  submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
95
+
96
  with gr.Column(scale=3):
 
97
  lesson_output = gr.Markdown(label="Lesson")
98
  question_output = gr.Markdown(label="Comprehension Question")
99
  feedback_output = gr.Markdown(label="Feedback")
100
+
 
101
  with gr.Row():
102
  with gr.Column(scale=2):
 
103
  model_selector = gr.Radio(
104
  ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
105
  label="Select Image Generation Model",
106
  value="Model 1 (Turbo Realism)"
107
  )
108
  submit_button_visual = gr.Button("Generate Visuals", variant="primary")
109
+
110
  with gr.Column(scale=3):
 
111
  output1 = gr.Image(label="Generated Image 1")
112
  output2 = gr.Image(label="Generated Image 2")
113
  output3 = gr.Image(label="Generated Image 3")
114
+
115
  gr.Markdown("""
116
  ### How to Use
117
+ 1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, question, and feedback.
118
+ 2. **Visual Section**: Select a model and click 'Generate Visuals' to see 3 image variations based on your input.
119
+ 3. Review the AI-generated content to enhance your learning!
120
  """)
121
+
122
  def process_output_text(subject, difficulty, student_input):
123
  try:
124
  tutor_output = generate_tutor_output(subject, difficulty, student_input)
125
+ parsed = json.loads(tutor_output)
126
  return parsed["lesson"], parsed["question"], parsed["feedback"]
127
+ except Exception as e:
128
+ return f"Error: {str(e)}", "No question available", "No feedback available"
129
+
130
  def process_output_visual(text, selected_model):
131
  try:
132
+ images = generate_images(text, selected_model)
133
  return images[0], images[1], images[2]
134
+ except Exception as e:
135
  return None, None, None
136
+
 
137
  submit_button_text.click(
138
  fn=process_output_text,
139
  inputs=[subject, difficulty, student_input],
140
  outputs=[lesson_output, question_output, feedback_output]
141
  )
142
+
 
143
  submit_button_visual.click(
144
  fn=process_output_visual,
145
  inputs=[student_input, model_selector],
146
  outputs=[output1, output2, output3]
147
  )
148
 
149
+ # In Hugging Face Spaces, this variable is automatically used as the app entry point
150
+ demo.launch()