Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import json
|
|
6 |
import torch
|
7 |
from diffusers import StableDiffusionPipeline
|
8 |
|
9 |
-
# Get Groq API key from environment variables
|
10 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
11 |
if not GROQ_API_KEY:
|
12 |
raise ValueError("Please set GROQ_API_KEY in the Space settings under 'Variables'.")
|
@@ -14,15 +14,20 @@ if not GROQ_API_KEY:
|
|
14 |
# Initialize Groq client
|
15 |
client = Groq(api_key=GROQ_API_KEY)
|
16 |
|
17 |
-
# Set up device and load the
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Function to generate tutor output (lesson, question, feedback)
|
28 |
def generate_tutor_output(subject, difficulty, student_input):
|
@@ -51,21 +56,28 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
51 |
)
|
52 |
return completion.choices[0].message.content
|
53 |
|
54 |
-
# Function to generate images
|
55 |
def generate_images(text, selected_model):
|
|
|
56 |
if selected_model == "Stable Diffusion (Realism)":
|
57 |
prompt_prefix = "realistic, detailed, vivid colors, "
|
58 |
elif selected_model == "Stable Diffusion (Portraits)":
|
59 |
prompt_prefix = "portrait, photorealistic, cinematic lighting, "
|
60 |
else:
|
|
|
61 |
return ["Invalid model selection."] * 3
|
62 |
|
63 |
results = []
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Gradio interface
|
71 |
with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
@@ -112,7 +124,7 @@ with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
|
112 |
gr.Markdown("""
|
113 |
### How to Use
|
114 |
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question'.
|
115 |
-
2. **Visual Section**: Select a style and click 'Generate Visuals' to see 3 images
|
116 |
3. Review the AI-generated content!
|
117 |
|
118 |
*Example*: Try "a photo of an astronaut riding a horse on mars" for visuals.
|
@@ -131,7 +143,8 @@ with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
|
131 |
images = generate_images(text, selected_model)
|
132 |
return images[0], images[1], images[2]
|
133 |
except Exception as e:
|
134 |
-
|
|
|
135 |
|
136 |
submit_button_text.click(
|
137 |
fn=process_output_text,
|
|
|
6 |
import torch
|
7 |
from diffusers import StableDiffusionPipeline
|
8 |
|
9 |
+
# Get Groq API key from environment variables
|
10 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
11 |
if not GROQ_API_KEY:
|
12 |
raise ValueError("Please set GROQ_API_KEY in the Space settings under 'Variables'.")
|
|
|
14 |
# Initialize Groq client
|
15 |
client = Groq(api_key=GROQ_API_KEY)
|
16 |
|
17 |
+
# Set up device and load the model
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
print(f"Device available: {device}, CUDA: {torch.cuda.is_available()}")
|
20 |
+
model_id = "runwayml/stable-diffusion-v1-5" # Updated to a widely supported model
|
21 |
+
try:
|
22 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
23 |
+
model_id,
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
safety_checker=None, # Optional: disabled for flexibility
|
26 |
+
).to(device)
|
27 |
+
pipe.enable_model_cpu_offload() # Optimize memory usage
|
28 |
+
print(f"Model loaded successfully on {device}: {model_id}")
|
29 |
+
except Exception as e:
|
30 |
+
raise ValueError(f"Failed to load model {model_id}: {str(e)}")
|
31 |
|
32 |
# Function to generate tutor output (lesson, question, feedback)
|
33 |
def generate_tutor_output(subject, difficulty, student_input):
|
|
|
56 |
)
|
57 |
return completion.choices[0].message.content
|
58 |
|
59 |
+
# Function to generate images
|
60 |
def generate_images(text, selected_model):
|
61 |
+
print(f"Generating images for text: {text}, model: {selected_model}")
|
62 |
if selected_model == "Stable Diffusion (Realism)":
|
63 |
prompt_prefix = "realistic, detailed, vivid colors, "
|
64 |
elif selected_model == "Stable Diffusion (Portraits)":
|
65 |
prompt_prefix = "portrait, photorealistic, cinematic lighting, "
|
66 |
else:
|
67 |
+
print("Invalid model selection")
|
68 |
return ["Invalid model selection."] * 3
|
69 |
|
70 |
results = []
|
71 |
+
try:
|
72 |
+
for i in range(3):
|
73 |
+
modified_text = f"{prompt_prefix}{text} variation {i+1}, high quality"
|
74 |
+
print(f"Generating image {i+1} with prompt: {modified_text}")
|
75 |
+
image = pipe(modified_text, num_inference_steps=25).images[0]
|
76 |
+
results.append(image)
|
77 |
+
return results
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Error in image generation: {str(e)}")
|
80 |
+
return [f"Error: {str(e)}"] * 3
|
81 |
|
82 |
# Gradio interface
|
83 |
with gr.Blocks(title="AI Tutor with Visuals") as demo:
|
|
|
124 |
gr.Markdown("""
|
125 |
### How to Use
|
126 |
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question'.
|
127 |
+
2. **Visual Section**: Select a style and click 'Generate Visuals' to see 3 images.
|
128 |
3. Review the AI-generated content!
|
129 |
|
130 |
*Example*: Try "a photo of an astronaut riding a horse on mars" for visuals.
|
|
|
143 |
images = generate_images(text, selected_model)
|
144 |
return images[0], images[1], images[2]
|
145 |
except Exception as e:
|
146 |
+
error_msg = f"Visual generation failed: {str(e)}"
|
147 |
+
return error_msg, error_msg, error_msg
|
148 |
|
149 |
submit_button_text.click(
|
150 |
fn=process_output_text,
|