Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
from groq import Groq
|
3 |
import os
|
|
|
|
|
4 |
|
5 |
# Initialize Groq client with your API key
|
6 |
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
7 |
|
8 |
def generate_tutor_output(subject, difficulty, student_input):
|
9 |
-
# Construct the prompt for text generation
|
10 |
prompt = f"""
|
11 |
You are an expert tutor in {subject} at the {difficulty} level.
|
12 |
The student has provided the following input: "{student_input}"
|
@@ -19,7 +20,6 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
19 |
Format your response as a JSON object with keys: "lesson", "question", "feedback"
|
20 |
"""
|
21 |
|
22 |
-
# Generate completion from the Groq API
|
23 |
completion = client.chat.completions.create(
|
24 |
messages=[
|
25 |
{
|
@@ -35,9 +35,27 @@ def generate_tutor_output(subject, difficulty, student_input):
|
|
35 |
max_tokens=1000,
|
36 |
)
|
37 |
|
38 |
-
# Return the generated content (lesson, question, feedback)
|
39 |
return completion.choices[0].message.content
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Set up the Gradio interface
|
42 |
with gr.Blocks() as demo:
|
43 |
gr.Markdown("# 🎓 Your AI Tutor")
|
@@ -67,6 +85,7 @@ with gr.Blocks() as demo:
|
|
67 |
lesson_output = gr.Markdown(label="Lesson")
|
68 |
question_output = gr.Markdown(label="Comprehension Question")
|
69 |
feedback_output = gr.Markdown(label="Feedback")
|
|
|
70 |
|
71 |
gr.Markdown("""
|
72 |
### How to Use
|
@@ -74,21 +93,23 @@ with gr.Blocks() as demo:
|
|
74 |
2. Choose your difficulty level.
|
75 |
3. Enter the topic or question you'd like to explore.
|
76 |
4. Click 'Generate Lesson' to receive a personalized lesson, question, and feedback.
|
77 |
-
5.
|
78 |
-
6.
|
|
|
79 |
""")
|
80 |
|
81 |
def process_output(output):
|
82 |
try:
|
83 |
parsed = eval(output) # Convert string to dictionary
|
84 |
-
|
|
|
85 |
except:
|
86 |
-
return "Error parsing output", "No question available", "No feedback available"
|
87 |
|
88 |
submit_button.click(
|
89 |
fn=lambda s, d, i: process_output(generate_tutor_output(s, d, i)),
|
90 |
inputs=[subject, difficulty, student_input],
|
91 |
-
outputs=[lesson_output, question_output, feedback_output]
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from groq import Groq
|
3 |
import os
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
|
7 |
# Initialize Groq client with your API key
|
8 |
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
9 |
|
10 |
def generate_tutor_output(subject, difficulty, student_input):
|
|
|
11 |
prompt = f"""
|
12 |
You are an expert tutor in {subject} at the {difficulty} level.
|
13 |
The student has provided the following input: "{student_input}"
|
|
|
20 |
Format your response as a JSON object with keys: "lesson", "question", "feedback"
|
21 |
"""
|
22 |
|
|
|
23 |
completion = client.chat.completions.create(
|
24 |
messages=[
|
25 |
{
|
|
|
35 |
max_tokens=1000,
|
36 |
)
|
37 |
|
|
|
38 |
return completion.choices[0].message.content
|
39 |
|
40 |
+
# Function to generate a simple graph (e.g., bar chart)
|
41 |
+
def generate_graph():
|
42 |
+
# Example data
|
43 |
+
x = ['A', 'B', 'C', 'D']
|
44 |
+
y = [10, 20, 15, 25]
|
45 |
+
|
46 |
+
fig, ax = plt.subplots()
|
47 |
+
ax.bar(x, y)
|
48 |
+
ax.set_title("Example Bar Chart")
|
49 |
+
ax.set_xlabel("Categories")
|
50 |
+
ax.set_ylabel("Values")
|
51 |
+
|
52 |
+
# Save the plot to a file
|
53 |
+
plt.tight_layout()
|
54 |
+
plt.savefig("/tmp/bar_chart.png") # Save to temp directory
|
55 |
+
plt.close(fig)
|
56 |
+
|
57 |
+
return "/tmp/bar_chart.png" # Return the path to the saved image
|
58 |
+
|
59 |
# Set up the Gradio interface
|
60 |
with gr.Blocks() as demo:
|
61 |
gr.Markdown("# 🎓 Your AI Tutor")
|
|
|
85 |
lesson_output = gr.Markdown(label="Lesson")
|
86 |
question_output = gr.Markdown(label="Comprehension Question")
|
87 |
feedback_output = gr.Markdown(label="Feedback")
|
88 |
+
graph_output = gr.Image(label="Generated Graph")
|
89 |
|
90 |
gr.Markdown("""
|
91 |
### How to Use
|
|
|
93 |
2. Choose your difficulty level.
|
94 |
3. Enter the topic or question you'd like to explore.
|
95 |
4. Click 'Generate Lesson' to receive a personalized lesson, question, and feedback.
|
96 |
+
5. The AI will also generate a simple bar chart as a visual representation.
|
97 |
+
6. Review the AI-generated content to enhance your learning.
|
98 |
+
7. Feel free to ask follow-up questions or explore new topics!
|
99 |
""")
|
100 |
|
101 |
def process_output(output):
|
102 |
try:
|
103 |
parsed = eval(output) # Convert string to dictionary
|
104 |
+
graph_path = generate_graph() # Generate graph
|
105 |
+
return parsed["lesson"], parsed["question"], parsed["feedback"], graph_path
|
106 |
except:
|
107 |
+
return "Error parsing output", "No question available", "No feedback available", None
|
108 |
|
109 |
submit_button.click(
|
110 |
fn=lambda s, d, i: process_output(generate_tutor_output(s, d, i)),
|
111 |
inputs=[subject, difficulty, student_input],
|
112 |
+
outputs=[lesson_output, question_output, feedback_output, graph_output]
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|