File size: 4,653 Bytes
fb3bd84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import streamlit as st
import joblib

model_path = 'Best_model.joblib'
loaded_model = joblib.load(model_path)


# Preprocess input function
def preprocess_input(input_data):
    age = input_data['age']
    bmi = input_data.get('bmi', None)
    height = input_data.get('height', None)
    weight = input_data.get('weight', None)
    children = input_data['children']

    # Convert height to meters based on the selected unit
    height_unit = input_data.get('height_unit', 'meters')
    if height is not None and height_unit != 'meters':
        if height_unit == 'centimeters':
            height /= 100
        elif height_unit == 'feet':
            height *= 0.3048  # 1 foot = 0.3048 meters

    # Calculate BMI if height and weight are provided and height is not zero
    if height is not None and height != 0 and weight is not None:
        bmi = weight / (height ** 2)

    # Convert sex to binary representation
    sex_0 = 1 if input_data['sex'] == 'female' else 0
    sex_1 = 1 - sex_0

    # Convert smoker to binary representation
    smoker_0 = 1 if input_data['smoker'] == 'no' else 0
    smoker_1 = 1 - smoker_0

    # Map region name to numerical representation
    region_mapping = {'southeast': 1, 'southwest': 2, 'northwest': 3, 'northeast': 4}
    region = region_mapping.get(input_data['region'], 0)

    # Create binary representations for each region
    region_1 = 1 if region == 1 else 0
    region_2 = 1 if region == 2 else 0
    region_3 = 1 if region == 3 else 0
    region_4 = 1 if region == 4 else 0

    # Create the formatted input list with 11 features
    formatted_input = [age, bmi, children, sex_0, sex_1, region_1, region_2, region_3, region_4, smoker_0, smoker_1]

    return formatted_input


# Input page
def input_page():
    st.title('HealthInsure Claim Amount Predictor')
    st.write('Please fill in the following details:')
    
    age = None
    height = None
    weight = None
    
    age_warning = ''
    height_warning = ''
    weight_warning = ''
    
    age = st.number_input('Age', min_value=0, step=1, value=age)
    if age == 0:
        age_warning = 'Please enter correct age.'
        st.warning(age_warning)
    sex = st.radio('Sex', ('male', 'female'))

    # Side-by-side input for height unit and height
    col1, col2 = st.columns(2)
    with col1:
        height_unit = st.selectbox('Height Unit', ('meters', 'centimeters', 'feet'))
    with col2:
        height = st.number_input('Height', min_value=0.0, step=0.01, value=height)
    if height == 0:
        height_warning = 'Please enter correct height.'
        st.warning(height_warning)
    weight = st.number_input('Weight (in kg)', min_value=0.0, step=0.1, value=weight)
    if weight == 0:
        weight_warning = 'Please enter correct weight.'
        st.warning(weight_warning)

    # Calculate BMI immediately after entering height and weight if height is not zero
    bmi = None
    if height is not None and height != 0.0 and weight is not None:
        # Convert height based on selected height unit
        if height_unit != 'meters':
            if height_unit == 'centimeters':
                height /= 100
            elif height_unit == 'feet':
                height *= 0.3048  # 1 foot = 0.3048 meters

        # Calculate BMI
        bmi = weight / (height ** 2)
        st.write(f'BMI: {bmi:.2f}')

    children = st.number_input('Number of Children', min_value=0, step=1)
    smoker = st.selectbox('Smoker', ('yes', 'no'))
    region = st.selectbox('Region', ('southeast', 'southwest', 'northwest', 'northeast'))

    if st.button('Predict'):
        if age_warning or height_warning or weight_warning:
            st.error('Please correct the following input errors:')
            if age_warning:
                st.error(age_warning)
            if height_warning:
                st.error(height_warning)
            if weight_warning:
                st.error(weight_warning)
        else:
            input_data = {'age': age, 'sex': sex, 'height': height, 'weight': weight, 'children': children,
                          'smoker': smoker, 'region': region, 'bmi': bmi, 'height_unit': height_unit}
            processed_input = preprocess_input(input_data)
            charges = loaded_model.predict([processed_input])[0]
            st.write('## Estimated Claim Amount')
            st.write(f'Estimated Claim Amount: {charges:.2f}', unsafe_allow_html=True)
            st.write('The following value is estimated based on historical data and predictive modeling techniques and may not represent the exact amount.')


# Main function
def main():
    input_page()


if __name__ == '__main__':
    main()