File size: 1,085 Bytes
354d4c2
 
f1a0050
84a6c36
55535ff
f1a0050
 
 
 
 
 
84a6c36
e862792
84a6c36
f1a0050
 
 
 
 
 
 
 
5d41cba
f1a0050
 
 
 
 
 
84a6c36
 
 
 
 
 
f1a0050
84a6c36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import spaces

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "O1-OPEN/OpenO1-LLama-8B-v0.1"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

@spaces.GPU
def api_call(messages):
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=8192
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return response

def call_gpt(history, prompt):
    return api_call(history+[{"role":"user", "content":prompt}])

if __name__ == "__main__":
    messages = [{"role":"user", "content":"你是谁?"}]
    print(api_call(messages))
    breakpoint()