Spaces:
Running
Running
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "happzy2633/qwen2.5-7b-ins-v3" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def api_call(messages): | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
def call_gpt(history, prompt): | |
return api_call(history+[{"role":"user", "content":prompt}]) | |
if __name__ == "__main__": | |
messages = [{"role":"user", "content":"你是谁?"}] | |
print(api_call(messages)) | |
breakpoint() | |