FirstEver / Full_Codes.py
samiNCL
Update code
05a80ad
import pandas as pd
import spacy
import gradio as gr
import csv
from nrclex import NRCLex
from transformers import pipeline
from rake_nltk import Rake
# Initialize objects
emotion_pipeline = pipeline('sentiment-analysis', model='nlptown/bert-base-multilingual-uncased-sentiment')
nlp = spacy.load('en_core_web_sm')
rake = Rake()
def process_csv(file):
reader = csv.DictReader(file)
emotions = []
sentiments = []
entities = []
keywords = []
for row in reader:
text = row['Content'] # Replace 'Content' with the correct column name
nrc_obj = NRCLex(text)
emotion_scores = nrc_obj.affect_frequencies
emotions.append(emotion_scores)
sentiment = analyze_emotion(text)
sentiments.append(sentiment)
entities.append(analyze_entities(text))
keywords.append(extract_keywords(text)) # Extract keywords for each text
fieldnames = reader.fieldnames + list(emotions[0].keys()) + ['sentiment', 'entities', 'keywords']
output = []
for row, emotion_scores, sentiment, entity, keyword in zip(reader, emotions, sentiments, entities, keywords):
row.update(emotion_scores) # Update the row dictionary with emotion scores
row.update({'sentiment': sentiment, 'entities': entity, 'keywords': keyword}) # Update the row dictionary with sentiment, entities and keywords
output.append({field: row.get(field, '') for field in fieldnames}) # Write row with matching fields or empty values
return pd.DataFrame(output).to_csv(index=False)
def analyze_emotion(text):
result = emotion_pipeline(text)[0]
sentiment = result['label']
return sentiment
def analyze_entities(text):
doc = nlp(text)
entities = [(ent.text, ent.label_) for ent in doc.ents]
return entities
def extract_keywords(text):
rake.extract_keywords_from_text(text)
return rake.get_ranked_phrases() # Extract keywords from text
iface = gr.Interface(fn=process_csv, inputs=gr.inputs.File(type='csv'), outputs=gr.outputs.File())
iface.launch()