Spaces:
Sleeping
Sleeping
samiNCL
commited on
Commit
·
9d910f6
1
Parent(s):
f07cc92
new ammendments
Browse files
app.py
CHANGED
@@ -1,48 +1,39 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
import spacy
|
3 |
import gradio as gr
|
4 |
-
import csv
|
5 |
from nrclex import NRCLex
|
6 |
from transformers import pipeline
|
7 |
from rake_nltk import Rake
|
|
|
8 |
|
9 |
# Initialize objects
|
10 |
-
emotion_pipeline = pipeline('sentiment-analysis',
|
11 |
-
model='nlptown/bert-base-multilingual-uncased-sentiment')
|
12 |
nlp = spacy.load('en_core_web_sm')
|
13 |
rake = Rake()
|
14 |
|
15 |
def process_csv(file):
|
16 |
-
|
17 |
emotions = []
|
18 |
sentiments = []
|
19 |
entities = []
|
20 |
keywords = []
|
21 |
-
for row in
|
22 |
-
text = row['Content'] # Replace 'Content' with the correct column
|
23 |
-
name
|
24 |
nrc_obj = NRCLex(text)
|
25 |
emotion_scores = nrc_obj.affect_frequencies
|
26 |
emotions.append(emotion_scores)
|
27 |
sentiment = analyze_emotion(text)
|
28 |
sentiments.append(sentiment)
|
29 |
entities.append(analyze_entities(text))
|
30 |
-
keywords.append(extract_keywords(text)) # Extract keywords for
|
31 |
-
each text
|
32 |
|
33 |
-
|
34 |
-
['sentiment'
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
emotion scores
|
40 |
-
row.update({'sentiment': sentiment, 'entities': entity,
|
41 |
-
'keywords': keyword}) # Update the row dictionary with sentiment,
|
42 |
-
entities and keywords
|
43 |
-
output.append({field: row.get(field, '') for field in fieldnames})
|
44 |
-
# Write row with matching fields or empty values
|
45 |
-
return pd.DataFrame(output).to_csv(index=False)
|
46 |
|
47 |
def analyze_emotion(text):
|
48 |
result = emotion_pipeline(text)[0]
|
@@ -58,7 +49,5 @@ def extract_keywords(text):
|
|
58 |
rake.extract_keywords_from_text(text)
|
59 |
return rake.get_ranked_phrases() # Extract keywords from text
|
60 |
|
61 |
-
iface = gr.Interface(fn=process_csv, inputs=gr.inputs.
|
62 |
-
outputs=gr.outputs.File())
|
63 |
iface.launch()
|
64 |
-
|
|
|
1 |
+
# Sami Alghamdi 21 May 2023
|
2 |
import pandas as pd
|
3 |
import spacy
|
4 |
import gradio as gr
|
|
|
5 |
from nrclex import NRCLex
|
6 |
from transformers import pipeline
|
7 |
from rake_nltk import Rake
|
8 |
+
import io
|
9 |
|
10 |
# Initialize objects
|
11 |
+
emotion_pipeline = pipeline('sentiment-analysis', model='nlptown/bert-base-multilingual-uncased-sentiment')
|
|
|
12 |
nlp = spacy.load('en_core_web_sm')
|
13 |
rake = Rake()
|
14 |
|
15 |
def process_csv(file):
|
16 |
+
df = pd.read_csv(io.StringIO(file.decode('utf-8')))
|
17 |
emotions = []
|
18 |
sentiments = []
|
19 |
entities = []
|
20 |
keywords = []
|
21 |
+
for _, row in df.iterrows():
|
22 |
+
text = row['Content'] # Replace 'Content' with the correct column name
|
|
|
23 |
nrc_obj = NRCLex(text)
|
24 |
emotion_scores = nrc_obj.affect_frequencies
|
25 |
emotions.append(emotion_scores)
|
26 |
sentiment = analyze_emotion(text)
|
27 |
sentiments.append(sentiment)
|
28 |
entities.append(analyze_entities(text))
|
29 |
+
keywords.append(extract_keywords(text)) # Extract keywords for each text
|
|
|
30 |
|
31 |
+
df['emotions'] = emotions
|
32 |
+
df['sentiment'] = sentiments
|
33 |
+
df['entities'] = entities
|
34 |
+
df['keywords'] = keywords
|
35 |
+
|
36 |
+
return df.to_csv(index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def analyze_emotion(text):
|
39 |
result = emotion_pipeline(text)[0]
|
|
|
49 |
rake.extract_keywords_from_text(text)
|
50 |
return rake.get_ranked_phrases() # Extract keywords from text
|
51 |
|
52 |
+
iface = gr.Interface(fn=process_csv, inputs=gr.inputs.Textbox(lines=13, label="Paste CSV Here"), outputs="text")
|
|
|
53 |
iface.launch()
|
|