Spaces:
Running
Running
Upload 16 files
Browse files- README.md +44 -13
- app.py +173 -0
- conversation/__init__.py +0 -0
- conversation/__pycache__/__init__.cpython-313.pyc +0 -0
- conversation/__pycache__/talks.cpython-313.pyc +0 -0
- conversation/talks.py +21 -0
- embedding/__init__.py +0 -0
- embedding/__pycache__/__init__.cpython-313.pyc +0 -0
- embedding/__pycache__/vector_store.cpython-313.pyc +0 -0
- embedding/vector_store.py +26 -0
- requirements.txt +8 -0
- scraper/__init__.py +0 -0
- scraper/__pycache__/__init__.cpython-313.pyc +0 -0
- scraper/__pycache__/scraper.cpython-313.pyc +0 -0
- scraper/scraper.py +29 -0
- small_talks.json +19 -0
README.md
CHANGED
@@ -1,13 +1,44 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Chat_RAG
|
2 |
+
|
3 |
+
## Steps to Run the Project
|
4 |
+
|
5 |
+
Follow these steps to set up and run the Chat_RAG project:
|
6 |
+
|
7 |
+
1. **Clone the Repository:**
|
8 |
+
Begin by cloning the repository to your local machine using the following command:
|
9 |
+
```sh
|
10 |
+
git clone https://github.com/Samilincoln/Chat_RAG.git
|
11 |
+
```
|
12 |
+
|
13 |
+
2. **Navigate to the Project Directory:**
|
14 |
+
Change your current directory to the project directory:
|
15 |
+
```sh
|
16 |
+
cd Chat_RAG
|
17 |
+
```
|
18 |
+
|
19 |
+
3. **Install Required Dependencies:**
|
20 |
+
Install all the necessary dependencies specified in the `requirements.txt` file:
|
21 |
+
```sh
|
22 |
+
pip install -r requirements.txt
|
23 |
+
```
|
24 |
+
|
25 |
+
4. **Set Up Environment Variables:**
|
26 |
+
- Create a `.env` file in the root directory of the project.
|
27 |
+
- Add your Groq API key to the `.env` file by including the following line:
|
28 |
+
```
|
29 |
+
GROQ_API_KEY=your_api_key_here
|
30 |
+
```
|
31 |
+
|
32 |
+
5. **Navigate to the Client Directory:**
|
33 |
+
Change your directory to the client directory where the Streamlit application is located:
|
34 |
+
```sh
|
35 |
+
cd client
|
36 |
+
```
|
37 |
+
|
38 |
+
6. **Run the Streamlit Application:**
|
39 |
+
Launch the Streamlit application using the following command:
|
40 |
+
```sh
|
41 |
+
streamlit run app.py
|
42 |
+
```
|
43 |
+
|
44 |
+
By following these steps, you will have the Chat_RAG project up and running on your local machine.
|
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from decouple import config
|
3 |
+
import asyncio
|
4 |
+
from langchain.chains import create_retrieval_chain
|
5 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
|
8 |
+
from langchain_core.messages import SystemMessage
|
9 |
+
from scraper.scraper import process_urls
|
10 |
+
from embedding.vector_store import initialize_vector_store, clear_chroma_db
|
11 |
+
from conversation.talks import clean_input, small_talks
|
12 |
+
|
13 |
+
#Clearing ChromaDB at startup to clean up any previous data
|
14 |
+
clear_chroma_db()
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
#Groq API Key
|
20 |
+
groq_api = config("GROQ_API_KEY")
|
21 |
+
|
22 |
+
#Initializing LLM with memory
|
23 |
+
llm = ChatGroq(model="llama-3.2-1b-preview", groq_api_key=groq_api, temperature=0)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
#Ensure proper asyncio handling for Windows
|
28 |
+
import sys
|
29 |
+
if sys.platform.startswith("win"):
|
30 |
+
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
|
31 |
+
|
32 |
+
#Async helper function
|
33 |
+
def run_asyncio_coroutine(coro):
|
34 |
+
loop = asyncio.new_event_loop()
|
35 |
+
asyncio.set_event_loop(loop)
|
36 |
+
return loop.run_until_complete(coro)
|
37 |
+
|
38 |
+
import streamlit as st
|
39 |
+
|
40 |
+
st.title("WebGPT 1.0 🤖")
|
41 |
+
|
42 |
+
# URL inputs
|
43 |
+
urls = st.text_area("Enter URLs (one per line)")
|
44 |
+
run_scraper = st.button("Run Scraper", disabled=not urls.strip())
|
45 |
+
|
46 |
+
# Sessions & states
|
47 |
+
if "messages" not in st.session_state:
|
48 |
+
st.session_state.messages = [] # Chat history
|
49 |
+
if "history" not in st.session_state:
|
50 |
+
st.session_state.history = "" # Stores past Q&A for memory
|
51 |
+
if "scraping_done" not in st.session_state:
|
52 |
+
st.session_state.scraping_done = False
|
53 |
+
if "vector_store" not in st.session_state:
|
54 |
+
st.session_state.vector_store = None
|
55 |
+
|
56 |
+
# Run scraper
|
57 |
+
if run_scraper:
|
58 |
+
st.write("Fetching and processing URLs... This may take a while.")
|
59 |
+
split_docs = run_asyncio_coroutine(process_urls(urls.split("\n")))
|
60 |
+
st.session_state.vector_store = initialize_vector_store(split_docs)
|
61 |
+
st.session_state.scraping_done = True
|
62 |
+
st.success("Scraping and processing completed!")
|
63 |
+
|
64 |
+
# ✅ Clear chat button
|
65 |
+
if st.button("Clear Chat"):
|
66 |
+
st.session_state.messages = [] # Reset message history
|
67 |
+
st.session_state.history = "" # Reset history tracking
|
68 |
+
st.success("Chat cleared!")
|
69 |
+
|
70 |
+
# Ensuring chat only enables after scraping
|
71 |
+
if not st.session_state.scraping_done:
|
72 |
+
st.warning("Scrape some data first to enable chat!")
|
73 |
+
else:
|
74 |
+
st.write("### Chat With WebGPT 💬")
|
75 |
+
|
76 |
+
# Display chat history
|
77 |
+
for message in st.session_state.messages:
|
78 |
+
role, text = message["role"], message["text"]
|
79 |
+
with st.chat_message(role):
|
80 |
+
st.write(text)
|
81 |
+
|
82 |
+
# Takes in user input
|
83 |
+
user_query = st.chat_input("Ask a question...")
|
84 |
+
|
85 |
+
if user_query:
|
86 |
+
st.session_state.messages.append({"role": "user", "text": user_query})
|
87 |
+
with st.chat_message("user"):
|
88 |
+
st.write(user_query)
|
89 |
+
|
90 |
+
user_query_cleaned = clean_input(user_query)
|
91 |
+
response = "" # Default value for response
|
92 |
+
source_url = "" # Default value for source url
|
93 |
+
|
94 |
+
# Check for small talk responses
|
95 |
+
if user_query_cleaned in small_talks:
|
96 |
+
response = small_talks[user_query_cleaned]
|
97 |
+
source_url = "Knowledge base" # Small talk comes from the knowledge base
|
98 |
+
|
99 |
+
else:
|
100 |
+
# ✅ Setup retriever (with a similarity threshold or top-k retrieval)
|
101 |
+
retriever = st.session_state.vector_store.as_retriever(
|
102 |
+
search_kwargs={'k': 5}
|
103 |
+
)
|
104 |
+
|
105 |
+
# ✅ Retrieve context
|
106 |
+
retrieved_docs = retriever.invoke(user_query_cleaned)
|
107 |
+
retrieved_text = " ".join([doc.page_content for doc in retrieved_docs])
|
108 |
+
|
109 |
+
# ✅ Define Langchain PromptTemplate properly
|
110 |
+
system_prompt_template = PromptTemplate(
|
111 |
+
input_variables=["context", "query"],
|
112 |
+
template="""
|
113 |
+
You are WebGPT, an AI assistant for question-answering tasks that **only answers questions based on the provided context**.
|
114 |
+
|
115 |
+
- Understand the context {context} first and provide a relevant answer.
|
116 |
+
- If the answer is **not** found in the Context, reply with: "I can't find your request in the provided context."
|
117 |
+
- If the question is **unrelated** to the Context, reply with: "I can't answer that. do not generate responses."
|
118 |
+
- **Do not** use external knowledge, assumptions, or filler responses. Stick to the context provided.
|
119 |
+
- Keep responses clear, concise, and relevant to the user’s query.
|
120 |
+
|
121 |
+
Context:
|
122 |
+
{context}
|
123 |
+
|
124 |
+
Now, answer the user's question:
|
125 |
+
{input}
|
126 |
+
"""
|
127 |
+
)
|
128 |
+
|
129 |
+
# ✅ Generate prompt with retrieved context & user query
|
130 |
+
final_prompt = system_prompt_template.format(
|
131 |
+
context=retrieved_text,
|
132 |
+
input=user_query_cleaned
|
133 |
+
)
|
134 |
+
|
135 |
+
# ✅ Create chains (ensure the prompt is correct)
|
136 |
+
scraper_chain = create_stuff_documents_chain(llm=llm, prompt=system_prompt_template)
|
137 |
+
llm_chain = create_retrieval_chain(retriever, scraper_chain)
|
138 |
+
|
139 |
+
# ✅ Process response and source
|
140 |
+
if retrieved_docs:
|
141 |
+
try:
|
142 |
+
response_data = llm_chain.invoke({"context": retrieved_text, "input": user_query_cleaned})
|
143 |
+
response = response_data.get("answer", "").strip()
|
144 |
+
source_url = retrieved_docs[0].metadata.get("source", "Unknown")
|
145 |
+
|
146 |
+
# Fallback if response is still empty
|
147 |
+
if not response:
|
148 |
+
response = "I can't find your request in the provided context."
|
149 |
+
source_url = "No source found"
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
response = f"Error generating response: {str(e)}"
|
153 |
+
source_url = "Error"
|
154 |
+
|
155 |
+
else:
|
156 |
+
response = "I can't find your request in the provided context."
|
157 |
+
source_url = "No source found"
|
158 |
+
|
159 |
+
# ✅ Track history & update session state
|
160 |
+
history_text = "\n".join(
|
161 |
+
[f"User: {msg['text']}" if msg["role"] == "user" else f"AI: {msg['text']}" for msg in st.session_state.messages]
|
162 |
+
)
|
163 |
+
st.session_state.history = history_text
|
164 |
+
|
165 |
+
# ✅ Format and display response
|
166 |
+
formatted_response = f"**Answer:** {response}"
|
167 |
+
if response != "I can't find your request in the provided context." and source_url:
|
168 |
+
formatted_response += f"\n\n**Source:** {source_url}"
|
169 |
+
|
170 |
+
st.session_state.messages.append({"role": "assistant", "text": formatted_response})
|
171 |
+
with st.chat_message("assistant"):
|
172 |
+
st.write(formatted_response)
|
173 |
+
|
conversation/__init__.py
ADDED
File without changes
|
conversation/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (172 Bytes). View file
|
|
conversation/__pycache__/talks.cpython-313.pyc
ADDED
Binary file (1.31 kB). View file
|
|
conversation/talks.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import re
|
4 |
+
|
5 |
+
def load_small_talks():
|
6 |
+
"""Loads small talk responses from a JSON file located in the same directory as app.py."""
|
7 |
+
json_path = "small_talks.json" # Direct relative path
|
8 |
+
|
9 |
+
if not os.path.exists(json_path):
|
10 |
+
raise FileNotFoundError(f"File not found: {os.path.abspath(json_path)}")
|
11 |
+
|
12 |
+
with open(json_path, "r", encoding="utf-8") as file:
|
13 |
+
return json.load(file)
|
14 |
+
|
15 |
+
small_talks = load_small_talks()
|
16 |
+
|
17 |
+
def clean_input(user_input):
|
18 |
+
"""Removes punctuation and converts input to lowercase."""
|
19 |
+
return re.sub(r'[^\w\s]', '', user_input).strip().lower()
|
20 |
+
|
21 |
+
|
embedding/__init__.py
ADDED
File without changes
|
embedding/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (169 Bytes). View file
|
|
embedding/__pycache__/vector_store.cpython-313.pyc
ADDED
Binary file (1.37 kB). View file
|
|
embedding/vector_store.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import Chroma
|
5 |
+
|
6 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
7 |
+
|
8 |
+
#Utilizing the Chroma vector store for embedding and persistence
|
9 |
+
def initialize_vector_store(split_docs, persist_directory="./chroma_db"):
|
10 |
+
return Chroma.from_documents(
|
11 |
+
documents=split_docs,
|
12 |
+
embedding=embeddings,
|
13 |
+
persist_directory=persist_directory
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def clear_chroma_db():
|
18 |
+
persist_directory = "./chroma_db"
|
19 |
+
if os.path.exists(persist_directory):
|
20 |
+
try:
|
21 |
+
shutil.rmtree(persist_directory)
|
22 |
+
print("ChromaDB cleared.")
|
23 |
+
except PermissionError:
|
24 |
+
print("Fetching fromm current ChromaDb session. Restart server to clear ChromaDB.")
|
25 |
+
except KeyError:
|
26 |
+
print("ChromaDB cleared.")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain_huggingface
|
3 |
+
langchain_community
|
4 |
+
langchain
|
5 |
+
itertools
|
6 |
+
python-decouple
|
7 |
+
asyncio
|
8 |
+
|
scraper/__init__.py
ADDED
File without changes
|
scraper/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (167 Bytes). View file
|
|
scraper/__pycache__/scraper.cpython-313.pyc
ADDED
Binary file (1.66 kB). View file
|
|
scraper/scraper.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import AsyncChromiumLoader
|
2 |
+
from langchain_community.document_transformers import Html2TextTransformer
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from itertools import chain
|
5 |
+
|
6 |
+
|
7 |
+
async def process_urls(urls, persist_directory="./chroma_db"):
|
8 |
+
# Clear ChromaDB when new links are added
|
9 |
+
|
10 |
+
loader = AsyncChromiumLoader(urls)
|
11 |
+
docs = await loader.aload()
|
12 |
+
|
13 |
+
# ✅ Transform HTML to text
|
14 |
+
text_transformer = Html2TextTransformer()
|
15 |
+
transformed_docs = text_transformer.transform_documents(docs)
|
16 |
+
|
17 |
+
# ✅ Split text into chunks and retain metadata
|
18 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
19 |
+
split_docs_nested = [text_splitter.split_documents([doc]) for doc in transformed_docs]
|
20 |
+
split_docs = list(chain.from_iterable(split_docs_nested))
|
21 |
+
|
22 |
+
split_docs = []
|
23 |
+
for doc_list, original_doc in zip(split_docs_nested, transformed_docs):
|
24 |
+
for chunk in doc_list:
|
25 |
+
chunk.metadata["source"] = original_doc.metadata.get("source", "Unknown") # Preserve URL
|
26 |
+
split_docs.append(chunk)
|
27 |
+
|
28 |
+
return split_docs
|
29 |
+
|
small_talks.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hi": "Hello! How can I assist you today? Feel free to ask about the scraped data or anything specific.",
|
3 |
+
"hello": "Hey there! What’s on your mind? You can ask me anything from the retrieved data.",
|
4 |
+
"who are you": "I’m WebGPT, your Scraper Chat AI, here to help with insights from scraped content. What do you need?",
|
5 |
+
"how are you": "I’m doing great! How about you? If you have any questions about the scraped data, let me know!",
|
6 |
+
"what are you": "I’m WebGPT, an AI trained to provide insights from data. What would you like to know?",
|
7 |
+
"howdy": "Hello! I’m here to assist you. Got any questions from the retrieved data?",
|
8 |
+
"fine": "That’s great to hear! If you have any topic in mind, I can fetch relevant insights for you.",
|
9 |
+
"thanks": "You're welcome! If you need more help with the scraped data, just ask.",
|
10 |
+
"thank you": "You're always welcome! Let me know if I can provide any insights from the data.",
|
11 |
+
"good": "Awesome! Do you have any queries about the retrieved information?",
|
12 |
+
"good morning": "Good morning! Hope your day goes well. Need any insights from the scraped content?",
|
13 |
+
"good night": "Good night! Sleep well and take care. Before you go, got any last questions on the data?",
|
14 |
+
"what's up": "Not much, just here to assist you! Got any questions about the retrieved data?",
|
15 |
+
"bye": "Goodbye! Have a great day! If you need insights later, feel free to return.",
|
16 |
+
"okay Thank you": "You're welcome! If you have more questions about the scraped data, don’t hesitate to ask.",
|
17 |
+
"okay": "Alright! If you need any insights from the retrieved data, feel free to ask.",
|
18 |
+
"thanks a lot": "You're welcome! If you need more help with the scraped data, just ask."
|
19 |
+
}
|