Spaces:
Running
Running
Roman Solomatin
commited on
base working
Browse files- .pre-commit-config.yaml +7 -0
- Makefile +3 -2
- pdm.lock +21 -1
- pyproject.toml +1 -0
- requirements.txt +9 -0
- src/encodechka/app.py +202 -197
- src/encodechka/display/formatting.py +4 -1
- src/encodechka/display/utils.py +18 -23
- src/encodechka/envs.py +1 -1
- src/encodechka/leaderboard/read_evals.py +15 -17
- src/encodechka/populate.py +6 -3
- src/encodechka/submission/check_validity.py +54 -47
- src/encodechka/submission/submit.py +5 -2
.pre-commit-config.yaml
CHANGED
@@ -60,3 +60,10 @@ repos:
|
|
60 |
- id: ruff-format
|
61 |
types_or: [ python, pyi, jupyter ]
|
62 |
args: [ --config, pyproject.toml ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
- id: ruff-format
|
61 |
types_or: [ python, pyi, jupyter ]
|
62 |
args: [ --config, pyproject.toml ]
|
63 |
+
|
64 |
+
- repo: https://github.com/pdm-project/pdm
|
65 |
+
rev: 2.15.3
|
66 |
+
hooks:
|
67 |
+
- id: pdm-export
|
68 |
+
args: [ '-o', 'requirements.txt']
|
69 |
+
files: ^pdm.lock$
|
Makefile
CHANGED
@@ -4,10 +4,11 @@
|
|
4 |
|
5 |
style:
|
6 |
ruff format
|
7 |
-
pre-commit run --all-files
|
8 |
-
|
9 |
|
10 |
quality:
|
11 |
ruff check
|
12 |
|
|
|
|
|
|
|
13 |
all: style quality
|
|
|
4 |
|
5 |
style:
|
6 |
ruff format
|
|
|
|
|
7 |
|
8 |
quality:
|
9 |
ruff check
|
10 |
|
11 |
+
pre-commit:
|
12 |
+
pre-commit run --all-files
|
13 |
+
|
14 |
all: style quality
|
pdm.lock
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
groups = ["default", "lint"]
|
6 |
strategy = ["cross_platform", "inherit_metadata"]
|
7 |
lock_version = "4.4.1"
|
8 |
-
content_hash = "sha256:
|
9 |
|
10 |
[[package]]
|
11 |
name = "aiofiles"
|
@@ -751,6 +751,26 @@ files = [
|
|
751 |
{file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"},
|
752 |
]
|
753 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
754 |
[[package]]
|
755 |
name = "pydantic"
|
756 |
version = "2.7.4"
|
|
|
5 |
groups = ["default", "lint"]
|
6 |
strategy = ["cross_platform", "inherit_metadata"]
|
7 |
lock_version = "4.4.1"
|
8 |
+
content_hash = "sha256:66e66d639b37e39bcbe01ff1d2345c10ada9d3e8c19397250879b6aea903b4b3"
|
9 |
|
10 |
[[package]]
|
11 |
name = "aiofiles"
|
|
|
751 |
{file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"},
|
752 |
]
|
753 |
|
754 |
+
[[package]]
|
755 |
+
name = "pyarrow"
|
756 |
+
version = "16.1.0"
|
757 |
+
requires_python = ">=3.8"
|
758 |
+
summary = "Python library for Apache Arrow"
|
759 |
+
groups = ["default"]
|
760 |
+
dependencies = [
|
761 |
+
"numpy>=1.16.6",
|
762 |
+
]
|
763 |
+
files = [
|
764 |
+
{file = "pyarrow-16.1.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:17e23b9a65a70cc733d8b738baa6ad3722298fa0c81d88f63ff94bf25eaa77b9"},
|
765 |
+
{file = "pyarrow-16.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4740cc41e2ba5d641071d0ab5e9ef9b5e6e8c7611351a5cb7c1d175eaf43674a"},
|
766 |
+
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98100e0268d04e0eec47b73f20b39c45b4006f3c4233719c3848aa27a03c1aef"},
|
767 |
+
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68f409e7b283c085f2da014f9ef81e885d90dcd733bd648cfba3ef265961848"},
|
768 |
+
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a8914cd176f448e09746037b0c6b3a9d7688cef451ec5735094055116857580c"},
|
769 |
+
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:48be160782c0556156d91adbdd5a4a7e719f8d407cb46ae3bb4eaee09b3111bd"},
|
770 |
+
{file = "pyarrow-16.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9cf389d444b0f41d9fe1444b70650fea31e9d52cfcb5f818b7888b91b586efff"},
|
771 |
+
{file = "pyarrow-16.1.0.tar.gz", hash = "sha256:15fbb22ea96d11f0b5768504a3f961edab25eaf4197c341720c4a387f6c60315"},
|
772 |
+
]
|
773 |
+
|
774 |
[[package]]
|
775 |
name = "pydantic"
|
776 |
version = "2.7.4"
|
pyproject.toml
CHANGED
@@ -24,6 +24,7 @@ dependencies = [
|
|
24 |
# "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463",
|
25 |
# "accelerate",
|
26 |
# "sentencepiece",
|
|
|
27 |
]
|
28 |
requires-python = "==3.10.*"
|
29 |
readme = "README.md"
|
|
|
24 |
# "lm-eval @ git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463",
|
25 |
# "accelerate",
|
26 |
# "sentencepiece",
|
27 |
+
"pyarrow>=16.1.0",
|
28 |
]
|
29 |
requires-python = "==3.10.*"
|
30 |
readme = "README.md"
|
requirements.txt
CHANGED
@@ -265,6 +265,15 @@ pillow==10.3.0 \
|
|
265 |
--hash=sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015 \
|
266 |
--hash=sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170 \
|
267 |
--hash=sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
pydantic==2.7.4 \
|
269 |
--hash=sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52 \
|
270 |
--hash=sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0
|
|
|
265 |
--hash=sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015 \
|
266 |
--hash=sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170 \
|
267 |
--hash=sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f
|
268 |
+
pyarrow==16.1.0 \
|
269 |
+
--hash=sha256:15fbb22ea96d11f0b5768504a3f961edab25eaf4197c341720c4a387f6c60315 \
|
270 |
+
--hash=sha256:17e23b9a65a70cc733d8b738baa6ad3722298fa0c81d88f63ff94bf25eaa77b9 \
|
271 |
+
--hash=sha256:4740cc41e2ba5d641071d0ab5e9ef9b5e6e8c7611351a5cb7c1d175eaf43674a \
|
272 |
+
--hash=sha256:48be160782c0556156d91adbdd5a4a7e719f8d407cb46ae3bb4eaee09b3111bd \
|
273 |
+
--hash=sha256:98100e0268d04e0eec47b73f20b39c45b4006f3c4233719c3848aa27a03c1aef \
|
274 |
+
--hash=sha256:9cf389d444b0f41d9fe1444b70650fea31e9d52cfcb5f818b7888b91b586efff \
|
275 |
+
--hash=sha256:a8914cd176f448e09746037b0c6b3a9d7688cef451ec5735094055116857580c \
|
276 |
+
--hash=sha256:f68f409e7b283c085f2da014f9ef81e885d90dcd733bd648cfba3ef265961848
|
277 |
pydantic==2.7.4 \
|
278 |
--hash=sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52 \
|
279 |
--hash=sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0
|
src/encodechka/app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from about import (
|
4 |
-
CITATION_BUTTON_LABEL,
|
5 |
-
CITATION_BUTTON_TEXT,
|
6 |
-
EVALUATION_QUEUE_TEXT,
|
7 |
INTRODUCTION_TEXT,
|
8 |
LLM_BENCHMARKS_TEXT,
|
9 |
TITLE,
|
@@ -14,13 +11,11 @@ from display.utils import (
|
|
14 |
BENCHMARK_COLS,
|
15 |
COLS,
|
16 |
EVAL_COLS,
|
17 |
-
EVAL_TYPES,
|
18 |
NUMERIC_INTERVALS,
|
19 |
TYPES,
|
20 |
AutoEvalColumn,
|
21 |
ModelType,
|
22 |
Precision,
|
23 |
-
WeightType,
|
24 |
fields,
|
25 |
)
|
26 |
from envs import (
|
@@ -67,7 +62,6 @@ try:
|
|
67 |
except Exception:
|
68 |
restart_space()
|
69 |
|
70 |
-
|
71 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
72 |
leaderboard_df = original_df.copy()
|
73 |
|
@@ -156,100 +150,83 @@ def filter_models(
|
|
156 |
return filtered_df
|
157 |
|
158 |
|
159 |
-
|
160 |
-
with
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
)
|
174 |
-
|
175 |
-
|
176 |
-
choices=[
|
177 |
-
value=[
|
178 |
-
c.name
|
179 |
-
for c in fields(AutoEvalColumn)
|
180 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
181 |
-
],
|
182 |
-
label="Select columns to show",
|
183 |
-
elem_id="column-select",
|
184 |
interactive=True,
|
|
|
185 |
)
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
interactive=True,
|
|
|
191 |
)
|
192 |
-
with gr.Column(min_width=320):
|
193 |
-
# with gr.Box(elem_id="box-filter"):
|
194 |
-
filter_columns_type = gr.CheckboxGroup(
|
195 |
-
label="Model types",
|
196 |
-
choices=[t.to_str() for t in ModelType],
|
197 |
-
value=[t.to_str() for t in ModelType],
|
198 |
-
interactive=True,
|
199 |
-
elem_id="filter-columns-type",
|
200 |
-
)
|
201 |
-
filter_columns_precision = gr.CheckboxGroup(
|
202 |
-
label="Precision",
|
203 |
-
choices=[i.value.name for i in Precision],
|
204 |
-
value=[i.value.name for i in Precision],
|
205 |
-
interactive=True,
|
206 |
-
elem_id="filter-columns-precision",
|
207 |
-
)
|
208 |
-
filter_columns_size = gr.CheckboxGroup(
|
209 |
-
label="Model sizes (in billions of parameters)",
|
210 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
211 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
212 |
-
interactive=True,
|
213 |
-
elem_id="filter-columns-size",
|
214 |
-
)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
update_table,
|
234 |
-
[
|
235 |
-
hidden_leaderboard_table_for_search,
|
236 |
-
shown_columns,
|
237 |
-
filter_columns_type,
|
238 |
-
filter_columns_precision,
|
239 |
-
filter_columns_size,
|
240 |
-
deleted_models_visibility,
|
241 |
-
search_bar,
|
242 |
-
],
|
243 |
-
leaderboard_table,
|
244 |
-
)
|
245 |
-
for selector in [
|
246 |
-
shown_columns,
|
247 |
-
filter_columns_type,
|
248 |
-
filter_columns_precision,
|
249 |
-
filter_columns_size,
|
250 |
-
deleted_models_visibility,
|
251 |
-
]:
|
252 |
-
selector.change(
|
253 |
update_table,
|
254 |
[
|
255 |
hidden_leaderboard_table_for_search,
|
@@ -261,110 +238,138 @@ with demo:
|
|
261 |
search_bar,
|
262 |
],
|
263 |
leaderboard_table,
|
264 |
-
queue=True,
|
265 |
)
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
)
|
287 |
-
with gr.Accordion(
|
288 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
289 |
-
open=False,
|
290 |
-
):
|
291 |
-
with gr.Row():
|
292 |
-
running_eval_table = gr.components.Dataframe(
|
293 |
-
value=running_eval_queue_df,
|
294 |
-
headers=EVAL_COLS,
|
295 |
-
datatype=EVAL_TYPES,
|
296 |
-
row_count=5,
|
297 |
-
)
|
298 |
-
|
299 |
-
with gr.Accordion(
|
300 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
301 |
-
open=False,
|
302 |
-
):
|
303 |
-
with gr.Row():
|
304 |
-
pending_eval_table = gr.components.Dataframe(
|
305 |
-
value=pending_eval_queue_df,
|
306 |
-
headers=EVAL_COLS,
|
307 |
-
datatype=EVAL_TYPES,
|
308 |
-
row_count=5,
|
309 |
-
)
|
310 |
-
with gr.Row():
|
311 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
312 |
-
|
313 |
-
with gr.Row():
|
314 |
-
with gr.Column():
|
315 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
316 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
317 |
-
model_type = gr.Dropdown(
|
318 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
319 |
-
label="Model type",
|
320 |
-
multiselect=False,
|
321 |
-
value=None,
|
322 |
-
interactive=True,
|
323 |
-
)
|
324 |
-
|
325 |
-
with gr.Column():
|
326 |
-
precision = gr.Dropdown(
|
327 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
328 |
-
label="Precision",
|
329 |
-
multiselect=False,
|
330 |
-
value="float16",
|
331 |
-
interactive=True,
|
332 |
-
)
|
333 |
-
weight_type = gr.Dropdown(
|
334 |
-
choices=[i.value.name for i in WeightType],
|
335 |
-
label="Weights type",
|
336 |
-
multiselect=False,
|
337 |
-
value="Original",
|
338 |
-
interactive=True,
|
339 |
)
|
340 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
341 |
-
|
342 |
-
# submit_button = gr.Button("Submit Eval")
|
343 |
-
# submission_result = gr.Markdown()
|
344 |
-
# submit_button.click(
|
345 |
-
# add_new_eval,
|
346 |
-
# [
|
347 |
-
# model_name_textbox,
|
348 |
-
# base_model_name_textbox,
|
349 |
-
# revision_name_textbox,
|
350 |
-
# precision,
|
351 |
-
# weight_type,
|
352 |
-
# model_type,
|
353 |
-
# ],
|
354 |
-
# submission_result,
|
355 |
-
# )
|
356 |
-
|
357 |
-
with gr.Row():
|
358 |
-
with gr.Accordion("📙 Citation", open=False):
|
359 |
-
citation_button = gr.Textbox(
|
360 |
-
value=CITATION_BUTTON_TEXT,
|
361 |
-
label=CITATION_BUTTON_LABEL,
|
362 |
-
lines=20,
|
363 |
-
elem_id="citation-button",
|
364 |
-
show_copy_button=True,
|
365 |
-
)
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from about import (
|
|
|
|
|
|
|
4 |
INTRODUCTION_TEXT,
|
5 |
LLM_BENCHMARKS_TEXT,
|
6 |
TITLE,
|
|
|
11 |
BENCHMARK_COLS,
|
12 |
COLS,
|
13 |
EVAL_COLS,
|
|
|
14 |
NUMERIC_INTERVALS,
|
15 |
TYPES,
|
16 |
AutoEvalColumn,
|
17 |
ModelType,
|
18 |
Precision,
|
|
|
19 |
fields,
|
20 |
)
|
21 |
from envs import (
|
|
|
62 |
except Exception:
|
63 |
restart_space()
|
64 |
|
|
|
65 |
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
66 |
leaderboard_df = original_df.copy()
|
67 |
|
|
|
150 |
return filtered_df
|
151 |
|
152 |
|
153 |
+
def build_app() -> gr.Blocks:
|
154 |
+
with gr.Blocks(css=custom_css) as app:
|
155 |
+
gr.HTML(TITLE)
|
156 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
157 |
+
|
158 |
+
with gr.Tabs(elem_classes="tab-buttons"):
|
159 |
+
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
with gr.Row():
|
163 |
+
search_bar = gr.Textbox(
|
164 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) "
|
165 |
+
"and press ENTER...",
|
166 |
+
show_label=False,
|
167 |
+
elem_id="search-bar",
|
168 |
+
)
|
169 |
+
with gr.Row():
|
170 |
+
shown_columns = gr.CheckboxGroup(
|
171 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
|
172 |
+
value=[
|
173 |
+
c.name
|
174 |
+
for c in fields(AutoEvalColumn)
|
175 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
176 |
+
],
|
177 |
+
label="Select columns to show",
|
178 |
+
elem_id="column-select",
|
179 |
+
interactive=True,
|
180 |
+
)
|
181 |
+
with gr.Row():
|
182 |
+
deleted_models_visibility = gr.Checkbox(
|
183 |
+
value=False,
|
184 |
+
label="Show gated/private/deleted models",
|
185 |
+
interactive=True,
|
186 |
+
)
|
187 |
+
with gr.Column(min_width=320):
|
188 |
+
# with gr.Box(elem_id="box-filter"):
|
189 |
+
filter_columns_type = gr.CheckboxGroup(
|
190 |
+
label="Model types",
|
191 |
+
choices=[t.to_str() for t in ModelType],
|
192 |
+
value=[t.to_str() for t in ModelType],
|
193 |
+
interactive=True,
|
194 |
+
elem_id="filter-columns-type",
|
195 |
)
|
196 |
+
filter_columns_precision = gr.CheckboxGroup(
|
197 |
+
label="Precision",
|
198 |
+
choices=[i.value.name for i in Precision],
|
199 |
+
value=[i.value.name for i in Precision],
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
interactive=True,
|
201 |
+
elem_id="filter-columns-precision",
|
202 |
)
|
203 |
+
filter_columns_size = gr.CheckboxGroup(
|
204 |
+
label="Model sizes (in billions of parameters)",
|
205 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
206 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
207 |
interactive=True,
|
208 |
+
elem_id="filter-columns-size",
|
209 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
leaderboard_table = gr.components.Dataframe(
|
212 |
+
value=leaderboard_df[
|
213 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
|
214 |
+
],
|
215 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
216 |
+
datatype=TYPES,
|
217 |
+
elem_id="leaderboard-table",
|
218 |
+
interactive=False,
|
219 |
+
visible=True,
|
220 |
+
)
|
221 |
|
222 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
223 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
224 |
+
value=original_df[COLS],
|
225 |
+
headers=COLS,
|
226 |
+
datatype=TYPES,
|
227 |
+
visible=False,
|
228 |
+
)
|
229 |
+
search_bar.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
update_table,
|
231 |
[
|
232 |
hidden_leaderboard_table_for_search,
|
|
|
238 |
search_bar,
|
239 |
],
|
240 |
leaderboard_table,
|
|
|
241 |
)
|
242 |
+
for selector in [
|
243 |
+
shown_columns,
|
244 |
+
filter_columns_type,
|
245 |
+
filter_columns_precision,
|
246 |
+
filter_columns_size,
|
247 |
+
deleted_models_visibility,
|
248 |
+
]:
|
249 |
+
selector.change(
|
250 |
+
update_table,
|
251 |
+
[
|
252 |
+
hidden_leaderboard_table_for_search,
|
253 |
+
shown_columns,
|
254 |
+
filter_columns_type,
|
255 |
+
filter_columns_precision,
|
256 |
+
filter_columns_size,
|
257 |
+
deleted_models_visibility,
|
258 |
+
search_bar,
|
259 |
+
],
|
260 |
+
leaderboard_table,
|
261 |
+
queue=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
265 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
266 |
+
|
267 |
+
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
268 |
+
# with gr.Column():
|
269 |
+
# with gr.Row():
|
270 |
+
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
271 |
+
#
|
272 |
+
# with gr.Column():
|
273 |
+
# with gr.Accordion(
|
274 |
+
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
275 |
+
# open=False,
|
276 |
+
# ):
|
277 |
+
# with gr.Row():
|
278 |
+
# finished_eval_table = gr.components.Dataframe(
|
279 |
+
# value=finished_eval_queue_df,
|
280 |
+
# headers=EVAL_COLS,
|
281 |
+
# datatype=EVAL_TYPES,
|
282 |
+
# row_count=5,
|
283 |
+
# )
|
284 |
+
# with gr.Accordion(
|
285 |
+
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
286 |
+
# open=False,
|
287 |
+
# ):
|
288 |
+
# with gr.Row():
|
289 |
+
# running_eval_table = gr.components.Dataframe(
|
290 |
+
# value=running_eval_queue_df,
|
291 |
+
# headers=EVAL_COLS,
|
292 |
+
# datatype=EVAL_TYPES,
|
293 |
+
# row_count=5,
|
294 |
+
# )
|
295 |
+
#
|
296 |
+
# with gr.Accordion(
|
297 |
+
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
298 |
+
# open=False,
|
299 |
+
# ):
|
300 |
+
# with gr.Row():
|
301 |
+
# pending_eval_table = gr.components.Dataframe(
|
302 |
+
# value=pending_eval_queue_df,
|
303 |
+
# headers=EVAL_COLS,
|
304 |
+
# datatype=EVAL_TYPES,
|
305 |
+
# row_count=5,
|
306 |
+
# )
|
307 |
+
# with gr.Row():
|
308 |
+
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
309 |
+
#
|
310 |
+
# with gr.Row():
|
311 |
+
# with gr.Column():
|
312 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
313 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
314 |
+
# model_type = gr.Dropdown(
|
315 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
316 |
+
# label="Model type",
|
317 |
+
# multiselect=False,
|
318 |
+
# value=None,
|
319 |
+
# interactive=True,
|
320 |
+
# )
|
321 |
+
#
|
322 |
+
# with gr.Column():
|
323 |
+
# precision = gr.Dropdown(
|
324 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
325 |
+
# label="Precision",
|
326 |
+
# multiselect=False,
|
327 |
+
# value="float16",
|
328 |
+
# interactive=True,
|
329 |
+
# )
|
330 |
+
# weight_type = gr.Dropdown(
|
331 |
+
# choices=[i.value.name for i in WeightType],
|
332 |
+
# label="Weights type",
|
333 |
+
# multiselect=False,
|
334 |
+
# value="Original",
|
335 |
+
# interactive=True,
|
336 |
+
# )
|
337 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
338 |
+
#
|
339 |
+
# submit_button = gr.Button("Submit Eval")
|
340 |
+
# submission_result = gr.Markdown()
|
341 |
+
# submit_button.click(
|
342 |
+
# add_new_eval,
|
343 |
+
# [
|
344 |
+
# model_name_textbox,
|
345 |
+
# base_model_name_textbox,
|
346 |
+
# revision_name_textbox,
|
347 |
+
# precision,
|
348 |
+
# weight_type,
|
349 |
+
# model_type,
|
350 |
+
# ],
|
351 |
+
# submission_result,
|
352 |
+
# )
|
353 |
+
#
|
354 |
+
# with gr.Row():
|
355 |
+
# with gr.Accordion("📙 Citation", open=False):
|
356 |
+
# citation_button = gr.Textbox(
|
357 |
+
# value=CITATION_BUTTON_TEXT,
|
358 |
+
# label=CITATION_BUTTON_LABEL,
|
359 |
+
# lines=20,
|
360 |
+
# elem_id="citation-button",
|
361 |
+
# show_copy_button=True,
|
362 |
+
# )
|
363 |
+
return app
|
364 |
+
|
365 |
+
|
366 |
+
def main():
|
367 |
+
app = build_app()
|
368 |
+
scheduler = BackgroundScheduler()
|
369 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
370 |
+
scheduler.start()
|
371 |
+
app.queue(default_concurrency_limit=40).launch()
|
372 |
+
|
373 |
+
|
374 |
+
if __name__ == "__main__":
|
375 |
+
main()
|
src/encodechka/display/formatting.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
def model_hyperlink(link, model_name):
|
2 |
-
return
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
def make_clickable_model(model_name):
|
|
|
1 |
def model_hyperlink(link, model_name):
|
2 |
+
return (
|
3 |
+
f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;'
|
4 |
+
f'text-decoration-style: dotted;">{model_name}</a>'
|
5 |
+
)
|
6 |
|
7 |
|
8 |
def make_clickable_model(model_name):
|
src/encodechka/display/utils.py
CHANGED
@@ -2,8 +2,7 @@ from dataclasses import dataclass, make_dataclass
|
|
2 |
from enum import Enum
|
3 |
|
4 |
import pandas as pd
|
5 |
-
|
6 |
-
from ..about import Tasks
|
7 |
|
8 |
|
9 |
def fields(raw_class):
|
@@ -23,42 +22,38 @@ class ColumnContent:
|
|
23 |
|
24 |
|
25 |
## Leaderboard columns
|
26 |
-
auto_eval_column_dict = [
|
27 |
-
|
28 |
-
auto_eval_column_dict.append(
|
29 |
-
[
|
30 |
"model_type_symbol",
|
31 |
ColumnContent,
|
32 |
ColumnContent("T", "str", True, never_hidden=True),
|
33 |
-
|
34 |
-
|
35 |
-
auto_eval_column_dict.append(
|
36 |
-
[
|
37 |
"model",
|
38 |
ColumnContent,
|
39 |
ColumnContent("Model", "markdown", True, never_hidden=True),
|
40 |
-
|
41 |
-
|
42 |
# Scores
|
43 |
-
auto_eval_column_dict.append(
|
44 |
for task in Tasks:
|
45 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
46 |
# Model information
|
47 |
-
auto_eval_column_dict.append(
|
48 |
-
auto_eval_column_dict.append(
|
49 |
-
auto_eval_column_dict.append(
|
50 |
-
auto_eval_column_dict.append(
|
51 |
-
auto_eval_column_dict.append(
|
52 |
-
auto_eval_column_dict.append(
|
53 |
-
auto_eval_column_dict.append(
|
54 |
auto_eval_column_dict.append(
|
55 |
-
|
56 |
"still_on_hub",
|
57 |
ColumnContent,
|
58 |
ColumnContent("Available on the hub", "bool", False),
|
59 |
-
|
60 |
)
|
61 |
-
auto_eval_column_dict.append(
|
62 |
|
63 |
# We use make dataclass to dynamically fill the scores from Tasks
|
64 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
2 |
from enum import Enum
|
3 |
|
4 |
import pandas as pd
|
5 |
+
from about import Tasks
|
|
|
6 |
|
7 |
|
8 |
def fields(raw_class):
|
|
|
22 |
|
23 |
|
24 |
## Leaderboard columns
|
25 |
+
auto_eval_column_dict = [
|
26 |
+
(
|
|
|
|
|
27 |
"model_type_symbol",
|
28 |
ColumnContent,
|
29 |
ColumnContent("T", "str", True, never_hidden=True),
|
30 |
+
),
|
31 |
+
(
|
|
|
|
|
32 |
"model",
|
33 |
ColumnContent,
|
34 |
ColumnContent("Model", "markdown", True, never_hidden=True),
|
35 |
+
),
|
36 |
+
]
|
37 |
# Scores
|
38 |
+
auto_eval_column_dict.append(("average", ColumnContent, ColumnContent("Average ⬆️", "number", True)))
|
39 |
for task in Tasks:
|
40 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
41 |
# Model information
|
42 |
+
auto_eval_column_dict.append(("model_type", ColumnContent, ColumnContent("Type", "str", False)))
|
43 |
+
auto_eval_column_dict.append(("architecture", ColumnContent, ColumnContent("Architecture", "str", False)))
|
44 |
+
auto_eval_column_dict.append(("weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)))
|
45 |
+
auto_eval_column_dict.append(("precision", ColumnContent, ColumnContent("Precision", "str", False)))
|
46 |
+
auto_eval_column_dict.append(("license", ColumnContent, ColumnContent("Hub License", "str", False)))
|
47 |
+
auto_eval_column_dict.append(("params", ColumnContent, ColumnContent("#Params (B)", "number", False)))
|
48 |
+
auto_eval_column_dict.append(("likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)))
|
49 |
auto_eval_column_dict.append(
|
50 |
+
(
|
51 |
"still_on_hub",
|
52 |
ColumnContent,
|
53 |
ColumnContent("Available on the hub", "bool", False),
|
54 |
+
)
|
55 |
)
|
56 |
+
auto_eval_column_dict.append(("revision", ColumnContent, ColumnContent("Model sha", "str", False, False)))
|
57 |
|
58 |
# We use make dataclass to dynamically fill the scores from Tasks
|
59 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/encodechka/envs.py
CHANGED
@@ -6,7 +6,7 @@ from huggingface_hub import HfApi
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
|
9 |
-
OWNER = "demo-leaderboard-backend"
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
OWNER = "demo-leaderboard-backend"
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
src/encodechka/leaderboard/read_evals.py
CHANGED
@@ -5,10 +5,8 @@ from dataclasses import dataclass
|
|
5 |
|
6 |
import dateutil
|
7 |
import numpy as np
|
8 |
-
|
9 |
-
from
|
10 |
-
from ..display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
11 |
-
from ..submission.check_validity import is_model_on_hub
|
12 |
|
13 |
|
14 |
@dataclass
|
@@ -56,17 +54,17 @@ class EvalResult:
|
|
56 |
result_key = f"{org}_{model}_{precision.value.name}"
|
57 |
full_model = "/".join(org_and_model)
|
58 |
|
59 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
)
|
65 |
-
architecture = "?"
|
66 |
-
if model_config is not None:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
# Extract results available in this file (some results are split in several files)
|
72 |
results = {}
|
@@ -89,8 +87,8 @@ class EvalResult:
|
|
89 |
results=results,
|
90 |
precision=precision,
|
91 |
revision=config.get("model_sha", ""),
|
92 |
-
still_on_hub=still_on_hub,
|
93 |
-
architecture=architecture,
|
94 |
)
|
95 |
|
96 |
def update_with_request_file(self, requests_path):
|
|
|
5 |
|
6 |
import dateutil
|
7 |
import numpy as np
|
8 |
+
from display.formatting import make_clickable_model
|
9 |
+
from display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
|
|
|
|
10 |
|
11 |
|
12 |
@dataclass
|
|
|
54 |
result_key = f"{org}_{model}_{precision.value.name}"
|
55 |
full_model = "/".join(org_and_model)
|
56 |
|
57 |
+
# still_on_hub, _, model_config = is_model_on_hub(
|
58 |
+
# full_model,
|
59 |
+
# config.get("model_sha", "main"),
|
60 |
+
# trust_remote_code=True,
|
61 |
+
# test_tokenizer=False,
|
62 |
+
# )
|
63 |
+
# architecture = "?"
|
64 |
+
# if model_config is not None:
|
65 |
+
# architectures = getattr(model_config, "architectures", None)
|
66 |
+
# if architectures:
|
67 |
+
# architecture = ";".join(architectures)
|
68 |
|
69 |
# Extract results available in this file (some results are split in several files)
|
70 |
results = {}
|
|
|
87 |
results=results,
|
88 |
precision=precision,
|
89 |
revision=config.get("model_sha", ""),
|
90 |
+
# still_on_hub=still_on_hub,
|
91 |
+
# architecture=architecture,
|
92 |
)
|
93 |
|
94 |
def update_with_request_file(self, requests_path):
|
src/encodechka/populate.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
from display.formatting import has_no_nan_values, make_clickable_model
|
6 |
from display.utils import AutoEvalColumn, EvalQueueColumn
|
7 |
-
from leaderboard.read_evals import get_raw_eval_results
|
8 |
|
9 |
|
10 |
-
def get_leaderboard_df(
|
|
|
|
|
11 |
"""Creates a dataframe from all the individual experiment results"""
|
12 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
13 |
all_data_json = [v.to_dict() for v in raw_data]
|
@@ -21,7 +24,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
21 |
return raw_data, df
|
22 |
|
23 |
|
24 |
-
def get_evaluation_queue_df(save_path: str, cols: list) ->
|
25 |
"""Creates the different dataframes for the evaluation queues requestes"""
|
26 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
27 |
all_evals = []
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
from typing import Any
|
4 |
|
5 |
import pandas as pd
|
6 |
from display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
+
from leaderboard.read_evals import EvalResult, get_raw_eval_results
|
9 |
|
10 |
|
11 |
+
def get_leaderboard_df(
|
12 |
+
results_path: str, requests_path: str, cols: list, benchmark_cols: list
|
13 |
+
) -> tuple[list[EvalResult], Any]:
|
14 |
"""Creates a dataframe from all the individual experiment results"""
|
15 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
16 |
all_data_json = [v.to_dict() for v in raw_data]
|
|
|
24 |
return raw_data, df
|
25 |
|
26 |
|
27 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
28 |
"""Creates the different dataframes for the evaluation queues requestes"""
|
29 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
30 |
all_evals = []
|
src/encodechka/submission/check_validity.py
CHANGED
@@ -34,56 +34,63 @@
|
|
34 |
# return True, ""
|
35 |
#
|
36 |
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
#
|
48 |
-
#
|
49 |
-
#
|
50 |
-
#
|
51 |
-
#
|
52 |
-
#
|
53 |
-
#
|
54 |
-
#
|
55 |
-
#
|
56 |
-
#
|
57 |
-
#
|
58 |
-
#
|
59 |
-
#
|
60 |
-
#
|
61 |
-
#
|
62 |
-
#
|
63 |
-
#
|
64 |
-
#
|
65 |
-
#
|
66 |
-
#
|
67 |
-
#
|
68 |
-
#
|
69 |
-
#
|
70 |
-
#
|
71 |
-
#
|
72 |
-
#
|
73 |
-
#
|
74 |
-
#
|
75 |
-
#
|
76 |
-
#
|
77 |
-
#
|
78 |
-
#
|
79 |
-
#
|
80 |
-
#
|
81 |
-
#
|
82 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
#
|
84 |
#
|
85 |
# def get_model_size(model_info: ModelInfo, precision: str):
|
86 |
-
# """Gets the model size from the configuration, or the model name if the
|
|
|
87 |
# try:
|
88 |
# model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
89 |
# except (AttributeError, TypeError):
|
|
|
34 |
# return True, ""
|
35 |
#
|
36 |
#
|
37 |
+
def is_model_on_hub(
|
38 |
+
model_name: str,
|
39 |
+
revision: str,
|
40 |
+
token: str | None = None,
|
41 |
+
trust_remote_code=False,
|
42 |
+
test_tokenizer=False,
|
43 |
+
) -> tuple[bool, str]:
|
44 |
+
"""Checks if the model model_name is on the hub,
|
45 |
+
and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
46 |
+
raise NotImplementedError("Replace with huggingface_hub API")
|
47 |
+
# try:
|
48 |
+
# config = AutoConfig.from_pretrained(
|
49 |
+
# model_name,
|
50 |
+
# revision=revision,
|
51 |
+
# trust_remote_code=trust_remote_code,
|
52 |
+
# token=token,
|
53 |
+
# )
|
54 |
+
# if test_tokenizer:
|
55 |
+
# try:
|
56 |
+
# tk = AutoTokenizer.from_pretrained(
|
57 |
+
# model_name,
|
58 |
+
# revision=revision,
|
59 |
+
# trust_remote_code=trust_remote_code,
|
60 |
+
# token=token,
|
61 |
+
# )
|
62 |
+
# except ValueError as e:
|
63 |
+
# return (
|
64 |
+
# False,
|
65 |
+
# f"uses a tokenizer which is not in a transformers release: {e}",
|
66 |
+
# None,
|
67 |
+
# )
|
68 |
+
# except Exception:
|
69 |
+
# return (
|
70 |
+
# False,
|
71 |
+
# "'s tokenizer cannot be loaded. Is your tokenizer class in a
|
72 |
+
# stable transformers release, and correctly configured?",
|
73 |
+
# None,
|
74 |
+
# )
|
75 |
+
# return True, None, config
|
76 |
+
#
|
77 |
+
# except ValueError:
|
78 |
+
# return (
|
79 |
+
# False,
|
80 |
+
# "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow
|
81 |
+
# these models to be automatically submitted to the leaderboard.",
|
82 |
+
# None,
|
83 |
+
# )
|
84 |
+
#
|
85 |
+
# except Exception:
|
86 |
+
# return False, "was not found on hub!", None
|
87 |
+
|
88 |
+
|
89 |
#
|
90 |
#
|
91 |
# def get_model_size(model_info: ModelInfo, precision: str):
|
92 |
+
# """Gets the model size from the configuration, or the model name if the
|
93 |
+
# configuration does not contain the information."""
|
94 |
# try:
|
95 |
# model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
96 |
# except (AttributeError, TypeError):
|
src/encodechka/submission/submit.py
CHANGED
@@ -53,7 +53,9 @@
|
|
53 |
# return styled_error(f'Base model "{base_model}" {error}')
|
54 |
#
|
55 |
# if not weight_type == "Adapter":
|
56 |
-
# model_on_hub, error, _ = is_model_on_hub(
|
|
|
|
|
57 |
# if not model_on_hub:
|
58 |
# return styled_error(f'Model "{model}" {error}')
|
59 |
#
|
@@ -118,5 +120,6 @@
|
|
118 |
# os.remove(out_path)
|
119 |
#
|
120 |
# return styled_message(
|
121 |
-
# "Your request has been submitted to the evaluation queue!\
|
|
|
122 |
# )
|
|
|
53 |
# return styled_error(f'Base model "{base_model}" {error}')
|
54 |
#
|
55 |
# if not weight_type == "Adapter":
|
56 |
+
# model_on_hub, error, _ = is_model_on_hub(
|
57 |
+
# model_name=model, revision=revision, token=TOKEN, test_tokenizer=True
|
58 |
+
# )
|
59 |
# if not model_on_hub:
|
60 |
# return styled_error(f'Model "{model}" {error}')
|
61 |
#
|
|
|
120 |
# os.remove(out_path)
|
121 |
#
|
122 |
# return styled_message(
|
123 |
+
# "Your request has been submitted to the evaluation queue!\n
|
124 |
+
# Please wait for up to an hour for the model to show in the PENDING list."
|
125 |
# )
|