# import json # import os # from collections import defaultdict # # import huggingface_hub # from huggingface_hub import ModelCard # from huggingface_hub.hf_api import ModelInfo # from transformers import AutoConfig # from transformers.models.auto.tokenization_auto import AutoTokenizer # # # def check_model_card(repo_id: str) -> tuple[bool, str]: # """Checks if the model card and license exist and have been filled""" # try: # card = ModelCard.load(repo_id) # except huggingface_hub.utils.EntryNotFoundError: # return ( # False, # "Please add a model card to your model to explain how you trained/fine-tuned it.", # ) # # # Enforce license metadata # if card.data.license is None: # if not ("license_name" in card.data and "license_link" in card.data): # return False, ( # "License not found. Please add a license to your model card using the `license` metadata or a" # " `license_name`/`license_link` pair." # ) # # # Enforce card content # if len(card.text) < 200: # return False, "Please add a description to your model card, it is too short." # # return True, "" # # # def is_model_on_hub( # model_name: str, # revision: str, # token: str | None = None, # trust_remote_code=False, # test_tokenizer=False, # ) -> tuple[bool, str]: # """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses.""" # try: # config = AutoConfig.from_pretrained( # model_name, # revision=revision, # trust_remote_code=trust_remote_code, # token=token, # ) # if test_tokenizer: # try: # tk = AutoTokenizer.from_pretrained( # model_name, # revision=revision, # trust_remote_code=trust_remote_code, # token=token, # ) # except ValueError as e: # return ( # False, # f"uses a tokenizer which is not in a transformers release: {e}", # None, # ) # except Exception: # return ( # False, # "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", # None, # ) # return True, None, config # # except ValueError: # return ( # False, # "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", # None, # ) # # except Exception: # return False, "was not found on hub!", None # # # def get_model_size(model_info: ModelInfo, precision: str): # """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" # try: # model_size = round(model_info.safetensors["total"] / 1e9, 3) # except (AttributeError, TypeError): # return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py # # size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 # model_size = size_factor * model_size # return model_size # # # def get_model_arch(model_info: ModelInfo): # """Gets the model architecture from the configuration""" # return model_info.config.get("architectures", "Unknown") # # # def already_submitted_models(requested_models_dir: str) -> set[str]: # """Gather a list of already submitted models to avoid duplicates""" # depth = 1 # file_names = [] # users_to_submission_dates = defaultdict(list) # # for root, _, files in os.walk(requested_models_dir): # current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) # if current_depth == depth: # for file in files: # if not file.endswith(".json"): # continue # with open(os.path.join(root, file)) as f: # info = json.load(f) # file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}") # # # Select organisation # if info["model"].count("/") == 0 or "submitted_time" not in info: # continue # organisation, _ = info["model"].split("/") # users_to_submission_dates[organisation].append(info["submitted_time"]) # # return set(file_names), users_to_submission_dates