# import json # import os # from datetime import datetime, timezone # # from ..display.formatting import styled_error, styled_message, styled_warning # from ..envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, TOKEN # from .check_validity import ( # already_submitted_models, # check_model_card, # get_model_size, # is_model_on_hub, # ) # # REQUESTED_MODELS = None # USERS_TO_SUBMISSION_DATES = None # # # def add_new_eval( # model: str, # base_model: str, # revision: str, # precision: str, # weight_type: str, # model_type: str, # ): # global REQUESTED_MODELS # global USERS_TO_SUBMISSION_DATES # if not REQUESTED_MODELS: # REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) # # user_name = "" # model_path = model # if "/" in model: # user_name = model.split("/")[0] # model_path = model.split("/")[1] # # precision = precision.split(" ")[0] # current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") # # if model_type is None or model_type == "": # return styled_error("Please select a model type.") # # # Does the model actually exist? # if revision == "": # revision = "main" # # # Is the model on the hub? # if weight_type in ["Delta", "Adapter"]: # base_model_on_hub, error, _ = is_model_on_hub( # model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True # ) # if not base_model_on_hub: # return styled_error(f'Base model "{base_model}" {error}') # # if not weight_type == "Adapter": # model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) # if not model_on_hub: # return styled_error(f'Model "{model}" {error}') # # # Is the model info correctly filled? # try: # model_info = API.model_info(repo_id=model, revision=revision) # except Exception: # return styled_error("Could not get your model information. Please fill it up properly.") # # model_size = get_model_size(model_info=model_info, precision=precision) # # # Were the model card and license filled? # try: # license = model_info.cardData["license"] # except Exception: # return styled_error("Please select a license for your model") # # modelcard_OK, error_msg = check_model_card(model) # if not modelcard_OK: # return styled_error(error_msg) # # # Seems good, creating the eval # print("Adding new eval") # # eval_entry = { # "model": model, # "base_model": base_model, # "revision": revision, # "precision": precision, # "weight_type": weight_type, # "status": "PENDING", # "submitted_time": current_time, # "model_type": model_type, # "likes": model_info.likes, # "params": model_size, # "license": license, # "private": False, # } # # # Check for duplicate submission # if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: # return styled_warning("This model has been already submitted.") # # print("Creating eval file") # OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" # os.makedirs(OUT_DIR, exist_ok=True) # out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" # # with open(out_path, "w") as f: # f.write(json.dumps(eval_entry)) # # print("Uploading eval file") # API.upload_file( # path_or_fileobj=out_path, # path_in_repo=out_path.split("eval-queue/")[1], # repo_id=QUEUE_REPO, # repo_type="dataset", # commit_message=f"Add {model} to eval queue", # ) # # # Remove the local file # os.remove(out_path) # # return styled_message( # "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." # )