Spaces:
Sleeping
Sleeping
File size: 1,855 Bytes
9342e63 17e4bee 9342e63 8dbb475 9342e63 6608016 8dbb475 9342e63 b112629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
# Setup class names
with open("class_names.txt", 'r') as f:
classes = [name.strip() for name in f]
# Model and transforms
model, transform = create_effnetb2_model(
num_classes=len(classes)
)
model.load_state_dict(
torch.load(
f="model_v3.pth",
map_location=torch.device("cpu")
)
)
# Predict function
def predict(img):
start_time = timer()
# Transform the target image and add a batch dimension
img = transform(img).unsqueeze(0)
model.eval()
with torch.inference_mode():
predictions = torch.softmax(model(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio)
pred_labels_and_probs = {classes[i]: float(predictions[0][i]) for i in range(len(classes))}
pred_time = round(timer() - start_time, 4)
return pred_labels_and_probs, pred_time
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Gradio interface
title = "Modelo de Clasificación de Imágenes Finetuneado (Chatbots)"
description = "Clasifica el tipo de clima de una imagen"
article = "Código en el que está basado [GitHub](https://github.com/georgescutelnicu/Weather-Image-Classification)."
demo = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=1, label="Predictions"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
demo.launch(debug=False,
share=False)
|