File size: 1,489 Bytes
9ba153c
 
 
 
 
18526df
337d2a4
 
18526df
b7ea2f1
 
 
 
1e4e32f
b7ea2f1
 
b992dd8
68856b5
b992dd8
68856b5
 
b7ea2f1
1e4e32f
 
195ae3a
 
b7ea2f1
 
 
 
 
 
 
 
1e4e32f
b7ea2f1
 
 
68856b5
b7ea2f1
 
1e4e32f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# >>>>>>   Adapted/frankensteined from these scripts:   <<<<<<<
#                 for Summary Interface:
# >>>>https://huggingface.co/spaces/khxu/pegasus-text-summarizers/blob/main/app.py
# 

import gradio as gr
from transformers import pipeline
from gradio.mix import Parallel, Series

# >>>>>>>>>>>>>>>>>>>> Danger Below <<<<<<<<<<<<<<<<<<<<<<
# Load Interfaces:
s2t = gr.Interface.load('huggingface/facebook/s2t-medium-librispeech-asr')
grammar = gr.Interface.load('huggingface/prithivida/grammar_error_correcter_v1')
sum_it = gr.Interface.load('huggingface/SamuelMiller/sum_it') 

# Audio Functions:
def out(audio):
  
  if audio1==None:
    return "no audio" 
  
  else:               
    a = s2t(audio)
    g = grammar(a)
    #s = sum_it(g)                              # Summarize Audio with sum_it
    return grammar(a) # grammar(s),                       # Grammar Filter 


# Construct Interfaces:
iface = gr.Interface(
  fn=out, 
  title="Speech Audio to text (with corrected grammar)",
  description="Let's Hear It!! This app transforms your speech (input) to text with corrected grammar after (output)!",
  inputs=[gr.inputs.Audio(source="microphone", type="filepath", label=None, optional=True)],
  outputs=['text','text']
)
  # From Original Code:
# gr.inputs.Audio(source="upload", type="filepath", label=None, optional=True),  
# examples=[["Grammar-Correct-Sample.mp3"], ["Grammar-Wrong-Sample.mp3"],],

# Launch Interface
iface.launch(enable_queue=True,show_error=True)