Spaces:
Sleeping
Sleeping
File size: 2,031 Bytes
9ba153c fb1bb66 ac8d0e5 9ba153c 18526df 337d2a4 18526df b7ea2f1 f81bd83 f799767 664ecda b7ea2f1 b992dd8 23e1010 da27dba 68856b5 9723177 1e4e32f 090d19c 195ae3a 9723177 b7ea2f1 da27dba 9723177 b7ea2f1 ab046ec b7ea2f1 68856b5 b7ea2f1 ab046ec 0a8189c ab046ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# >>>>>> Adapted/frankensteined from these scripts: <<<<<<<
# for Summary Interface:
# >>>> https://huggingface.co/spaces/khxu/pegasus-text-summarizers/blob/main/app.py
# Audio Interface
# >>>> https://huggingface.co/spaces/iSky/Speech-audio-to-text-with-grammar-correction/blob/main/app.py
# Gramar
# >>>> https://huggingface.co/deep-learning-analytics/GrammarCorrector/blob/main/README.md
import gradio as gr
from transformers import pipeline
from gradio.mix import Parallel, Series
# >>>>>>>>>>>>>>>>>>>> Danger Below <<<<<<<<<<<<<<<<<<<<<<
# Load Interfaces:
s2t = gr.Interface.load('huggingface/hf-internal-testing/processor_with_lm')
grammar = gr.Interface.load('huggingface/deep-learning-analytics/GrammarCorrector')
sum_it = gr.Interface.load('huggingface/SamuelMiller/lil_sum_sum')
# Audio Functions:
def out(audio):
flag = True
if audio==None:
return "no audio"
elif flag:
a = s2t(audio)
#g = grammar(a)
#s = sum_it(g) # Summarize Audio with sum_it
return a #grammar(a, num_return_sequences=1) # grammar(s), # Grammar Filter
else:
return "something is wrong in the function?"
# Construct Interfaces:
iface = gr.Interface(
fn=out,
title="Speech Audio to text (with corrected grammar)",
description="Let's Hear It!! This app transforms your speech (input) to text with corrected grammar after (output)!",
inputs= gr.inputs.Audio(source="microphone", type="filepath", label=None, optional=True),
outputs= 'text'
)
# Launch Interface
iface.launch(enable_queue=True,show_error=True)
# From Original Code:
# gr.inputs.Audio(source="upload", type="filepath", label=None, optional=True),
# examples=[["Grammar-Correct-Sample.mp3"], ["Grammar-Wrong-Sample.mp3"],],
#def speech_to_text(inp):
#pass # speech recognition model defined here
#gr.Interface(speech_to_text, inputs="mic", outputs=gr.Textbox(label="Predicted text", lines=4)) |