Spaces:
Sleeping
Sleeping
import torch | |
from transformers import pipeline | |
import gradio as gr | |
import streamlit as st | |
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration | |
from gradio.mix import Parallel, Series | |
# model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") | |
# processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") | |
# inputs = processor(ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt") | |
# generated_ids = model.generate(inputs["input_features"], attention_mask=inputs["attention_mask"]) | |
# transcription = processor.batch_decode(generated_ids) | |
desc = "Is this working or what??" | |
def summarize(text): | |
summ = gr.Interface.load('huggingface/google/pegasus-large') | |
summary = summ(text) | |
return summary | |
iface = gr.Interface(fn=summarize, | |
theme='huggingface', | |
title= 'sum_it', | |
description= desc, | |
inputs= "text", | |
outputs= 'textbox') | |
iface.launch(inline = False) | |