sum_it / app.py
SamuelMiller's picture
Update app.py
3b8bc2d
raw
history blame
1.09 kB
import torch
from transformers import pipeline
import gradio as gr
import streamlit as st
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
from gradio.mix import Parallel, Series
# model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
# processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
# inputs = processor(ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt")
# generated_ids = model.generate(inputs["input_features"], attention_mask=inputs["attention_mask"])
# transcription = processor.batch_decode(generated_ids)
desc = "Is this working or what??"
def summarize(text):
summ = gr.Interface.load('huggingface/google/pegasus-large')
summary = summ(text)
return summary
iface = gr.Interface(fn=summarize,
theme='huggingface',
title= 'sum_it',
description= desc,
inputs= "text",
outputs= 'textbox')
iface.launch(inline = False)