sum_it / app.py
SamuelMiller's picture
Update app.py
f4622ec
raw
history blame
985 Bytes
#import torch
#from transformers import pipeline
#import gradio as gr
#import streamlit as st
# from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
# from gradio.mix import Parallel, Series
#desc = "Summarize your text! (audio transcription available soon)"
import streamlit as st
from transformers import pipeline
pipe = pipeline('sentiment-analysis')
text = st.text_area('enter some text!')
if text:
out = pipe(text)
st.json(out)
#qa_model = 'huggingface/SamuelMiller/qa_squad'
#my_model = 'huggingface/SamuelMiller/lil_sumsum'
#better_model = 'huggingface/google/pegasus-large'
#def summarize(text):
#summ = gr.Interface.load(qa_model)
#summary = summ(text)
#return summary
#iface = gr.Interface(fn=summarize,
#theme='huggingface',
#title= 'sum_it',
#description= desc,
#inputs= "text",
#outputs= 'textbox')
#iface.launch(inline = False)