sum_it / app.py
SamuelMiller's picture
Update app.py
d7daaf8
raw
history blame
916 Bytes
import torch
from transformers import pipeline
import gradio as gr
import streamlit as st
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
# from gradio.mix import Parallel, Series
desc = "Summarize your text! (audio transcription available soon)"
pipe = pipeline('sentiment-analysis')
text = st.text_area('enter some text!')
if text:
out = pipe(text)
st.json(out)
qa_model = 'huggingface/SamuelMiller/qa_squad'
my_model = 'huggingface/SamuelMiller/lil_sumsum'
better_model = 'huggingface/google/pegasus-large'
#def summarize(text):
#summ = gr.Interface.load(qa_model)
#summary = summ(text)
#return summary
#iface = gr.Interface(fn=summarize,
#theme='huggingface',
#title= 'sum_it',
#description= desc,
#inputs= "text",
#outputs= 'textbox')
#iface.launch(inline = False)