Sanan commited on
Commit
f0470b4
·
1 Parent(s): 44091c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -23
app.py CHANGED
@@ -1,25 +1,2 @@
1
  import gradio as gr
2
  import torch
3
- from PIL import Image
4
-
5
- model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', force_reload=True)
6
-
7
- def yolo(im, size=640):
8
- g = (size / max(im.size)) # gain
9
- im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
10
-
11
- results = model(im) # inference
12
- results.render() # updates results.imgs with boxes and labels
13
- return Image.fromarray(results.imgs[0])
14
-
15
-
16
- inputs = gr.inputs.Image(type='pil', label="Original Image")
17
- outputs = gr.outputs.Image(type="pil", label="Output Image")
18
-
19
- title = "YOLOv5"
20
- description = "YOLOv5 Gradio demo for object detection. Upload an image or click an example image to use."
21
- article = "<p style='text-align: center'>YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov5'>Source code</a> |<a href='https://apps.apple.com/app/id1452689527'>iOS App</a> | <a href='https://pytorch.org/hub/ultralytics_yolov5'>PyTorch Hub</a></p>"
22
-
23
- gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(
24
- debug=True)
25
-
 
1
  import gradio as gr
2
  import torch